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Reliability-Based Optimal Design
and Tolerancing for Multibody
Systems Using Explicit Design
Space Decomposition
This paper introduces a new approach for the optimal geometric design and tolerancing
of multibody systems. The approach optimizes both the nominal system dimensions and
the associated tolerances by solving a reliability-based design optimization (RDBO)
problem under the assumption of truncated normal distributions of the geometric prop-
erties. The solution is obtained by first constructing the explicit boundaries of the failure
regions (limit state function) using a support vector machine, combined with adaptive
sampling and uniform design of experiments. The use of explicit boundaries enables the
treatment of systems with discontinuous or binary behaviors. The explicit boundaries also
allow for an efficient calculation of the probability of failure using importance sampling.
The probability of failure is subsequently approximated over the whole design space (the
nominal system dimensions and the associated tolerances), thus making the solution of
the RBDO problem straightforward. The proposed approach is applied to the optimiza-
tion of a web cutter mechanism. �DOI: 10.1115/1.4000760�

Keywords: multibody systems, tolerancing, uncertainty, reliability-based design
optimization, support vector machines, design of experiments
Introduction
It is well known that tolerances, which determine the acceptable

ange of geometric uncertainty, can have a significant impact on
he properties of multibody systems. Too large tolerances can trig-
er unwanted behaviors and lead to the reduction in system reli-
bility �1,2�. Too narrow tolerances result in an unnecessarily high
echnological effort for manufacturing and high production costs.
umerical models of complex multibody systems are usually
ased on deterministic geometric parameters. However, when un-
ertainty is considered, these parameters are randomly distributed
ithin tolerance intervals. If the distributions are known, it is
ossible, in theory, to propagate the uncertainties and find the
orresponding distribution of responses of the system.

Several methods exist to propagate uncertainties and estimate,
or instance, a probability of failure. The most used and basic
pproach is based on the Monte-Carlo simulations �MCS�, which
ypically requires a very large number of “tests” of system real-
zations to obtain an estimate of the probability of failure. For
fficiency, MCS are often coupled with a response approximation
e.g., a response surface or metamodel �3,4��, which enables large
mounts of samples without repetitive calls to often expensive
unction evaluations. However, there is obviously a strong depen-
ency of the estimated probability of failure on the quality of the
esponse approximation. Moment-based approaches, such as first
nd second-order reliability methods �FORM and SORM� �5�,
tem from another class of techniques, which are based on a linear
r quadratic approximation of the limit state function �boundary
f the failure domain�. These approaches often lack accuracy for a
omplex failure domain �e.g., disjoint failure spaces or highly
onlinear limit state functions�. A more general tool is provided
y polynomial chaos expansion �PCE�, which enables the propa-
ation of uncertainties of known probabilistic distributions to ob-
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tain the corresponding distribution of a response �6�. All the afore-
mentioned methods present limitations for problems with large
computational times per simulation and highly nonlinear behav-
iors �e.g., discontinuous responses�. Uncertainty propagation tech-
niques are also used in association with optimization techniques
for robust design or reliability-based design optimization
�RBDO�. These methods have been applied to many problems in
aerospace and mechanical engineering �7–10�. However, their ap-
plication to multibody systems is, to the best of the authors’
knowledge, rare.

This article proposes a novel methodology for the optimal geo-
metric design of multibody systems with consideration of geomet-
ric uncertainty. The method is based on the notion of explicit
design space decomposition, whereby the boundaries of failure
regions �i.e., regions that are associated to unacceptable system
performance� are defined explicitly as a function of the geometric
characteristics of the system. This decomposition is created using
a machine learning technique referred to as support vector ma-
chines �SVMs� �11�, uniform design of �computer� experiments
�DOEs� �12,13�, and adaptive sampling. The construction of ex-
plicit limit state functions using SVMs present the following ad-
vantages.

• It enables a straightforward use for MCS-based estimation
of the probability of failure while avoiding computationally
expensive multibody simulations. The SVM-based approach
can generate disjoint and nonconvex failure regions.

• It can handle discontinuous responses and binary design
problems �e.g., pass or fail�. These problems are not treat-
able using traditional response surface/metamodel ap-
proaches, which approximate the responses.

• It provides a framework for adaptive sampling and reduces
the number of computationally intensive function calls
�14,15�.

• Once the explicit limit state function is created, it is possible
to perform a reliability-based design optimization quite ef-

ficiently �16–18�.
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• It gives the designer more insight into the design space by
providing straightforward relationships between regions of
the design space and specific mechanical behaviors �17�.

In this article, the explicit design space decomposition is ap-
lied to the design of a web cutter, for which the member lengths
re within some tolerance intervals. A reliability-based design op-
imization is performed in order to find the optimal nominal geo-

etric configuration and corresponding tolerances that minimize
he cost while resulting in a probability of failure lower than a
pecific target.

Methods
The proposed methodology is aimed at generating an explicit

nalytical function, which maps the probabilistic distribution of
he geometric measures of the mechanical system to the resultant
robability of failure. This function can be used in the objective or
n the constraints of an RBDO problem, allowing the RBDO prob-
em to be solved efficiently. The methodology is based on the

odeling of the mechanical system and approximation at the de-
erministic and the probabilistic level.

The basic steps of the approach are summarized in Fig. 1. De-
erministic modeling �step one� refers to the simulation of the

echanical system using fundamental physical relations �first
rinciples�. An algorithm is defined that first accepts an arbitrary
ealization of the uncertain geometric measures, then integrates
his realization into the system model and simulates the resultant
ynamic system behavior. Finally, the dynamic behavior is cat-
gorized as satisfactory or not. In this step, all the specifics con-
erning the mechanical system are defined �Sec. 2.1�.

Deterministic approximation �step two� refers to the construc-
ion of an explicit limit state �classification� function. One key
eature of the proposed approach stems from the fact that the limit
tate is constructed using an SVM, which is efficiently evaluated

Fig. 1 Overall scheme of g
Sec. 2.2�. This is the most delicate step of the methodology as it
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is imperative to minimize the number of simulation calls, which,
in real world applications, may individually require multiple hours
of computation. An adaptive sampling technique is employed to
minimize the number of simulation calls necessary �Sec 2.3�.

Probabilistic modeling �step three� refers to the definition of an
algorithm, which accepts the probabilistic distribution of the un-
certain geometric measures of the mechanical system and gener-
ates an estimate of the resultant probability of failure �i.e., the
probability of emergence of unsatisfactory dynamic behavior�.
The probabilistic distribution is expressed as a function of a finite
number of scalar parameters: the nominal geometric measures and
the associated tolerances. The probability of failure estimate is
obtained by means of MCS. In each MCS-trial, the explicit limit
state function is employed �Sec. 2.4�, allowing computationally
expensive calls of multibody simulations to be avoided. As a re-
sult, MCS are computationally feasible even if complex real world
problems and high accuracy are considerd.

Probabilistic approximation �step four� refers to the derivation
of a regression model that approximates the input-output-relation
obtained through MCS �i.e., the relation between the nominal geo-
metric measures along with the associated tolerances and the re-
sultant probability of failure, Sec. 2.4�. An RBDO problem, in-
volving the regression model, which does not require calls to
multibody simulations or MCS, is then formulated. The problem
can be solved efficiently using standard nonlinear optimization
methods, while still incorporating a high �theoretically, nearly
full� degree of the relevant complexity of both the deterministic
and the probabilistic model �Sec. 2.5�.

In the following sections, all main components of the described
methodology are explained in more detail.

2.1 Multibody Simulation and Classification. In order to
apply the proposed methodology to a multibody system, multi-
body simulation is necessary to verify if a specific realization of
the system under consideration �with given fixed geometric char-

etric design methodology
acteristics� is acceptable or not. This is essential as the SVM ex-
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licit design space decomposition is based on this binary classifi-
ation of the geometric realizations. The overall scheme for
imulation-based derivation of such classification, referred to as
Geometry Classification”, is depicted in Fig. 2.

The geometric configuration to be analyzed is first incorporated
nto the multibody system model, which is then employed for
imulations using predefined representative system excitations.
imulation results are the system responses �forces, velocities,
tc.�, which are transferred to the load and functionality calcula-
ion modules.

The position coordinates, holding the trajectory information of
ll system components, and hence, characterizing the geometric
ystem component interplay, are processed by the “Functionality
alculation” module, yielding scalar indices that characterize the
uality of the geometric system movement. Such quality measure
ould, for example, be the mean deviation of an end-effector tra-
ectory from the optimal one. The time information is eliminated
n this process.

The forces, moments, accelerations, and velocities are trans-
erred to the “Load Calculation” module. There, the normal and
hear stresses developed in the system components are computed.
hese are then transformed into equivalent normal stresses, using
n appropriate comparison stress hypothesis. Afterwards, the
aximum stresses over space and time are computed for each

ystem component and transferred as load indices to the “Perfor-
ance Evaluation” module.
In the “Performance Evaluation” module, load and functionality

ndices are used to classify the system as either failing or not
ailing by comparing the overall dynamic performance displayed
y the performance indices with performance criteria �e.g., maxi-
um allowed stresses�. In this work, such criteria are constant

uantities, and are defined a priori.
The decision on system performance is the final output of a

rocessing sequence that started with the definition of the target
ultibody system geometry. The geometry classification module

omprising simulation, functionality calculation, load calculation,
nd performance evaluation, can therefore be interpreted as a clas-
ifier that assigns a binary decision to a given outcome of the
ncertain geometric system measures, which can be located any-
here inside the “accepted” geometric region defined by the tol-

rance intervals.

2.2 Design Space Decomposition Using Support Vector
achines. In order to provide a better understanding of the de-

ign space and its relation to cost and performance, this work
roposes to decompose the design space explicitly with support
ector machines �16,18–20�. This novel approach provides a
eeper insight into the design space through the association of one

ig. 2 Basic scheme of geometric configuration classification
y means of multibody simulation
ype of response with one specific region of the design space. In

ournal of Mechanical Design
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addition, as one of its most remarkable features, it allows an easy
calculation of probabilities of failure. An example of design space
decomposition with an SVM is given in Fig. 3. The example
shows three response clusters with respect to two variables. The
regions of the design space with the highest response are delim-
ited explicitly in terms of the variables using the SVM.

More precisely, consider a system whose responses �or any
other quantities such as the cost� have been evaluated based on a
design of experiments and classified as acceptable or unaccept-
able. The responses can then be projected onto the design space to
create a mapping between regions of the design space and “clouds
of responses” �Fig. 3�. Note that, as in the depicted example, the
responses might be discontinuous with clouds that are associated
with very distinct system behaviors. Using this mapping, the de-
signer can associate changes in the system’s characteristic quanti-
ties �e.g., performance� with regions of the design space. How-
ever, if only a few discrete data points are available, this might not
be very useful. For this reason, it is beneficial to obtain an explicit
expression of the region boundaries in the design space, such as
the ones given by SVMs. In other words, an analytical expression
for limit state functions is obtained. This forms the basis of the
concept of explicit decomposition of the design space.

Support vector machines, which are traditionally used for the
classification of data, provide a natural and powerful tool for the
construction of limit state functions. SVMs create a general ex-
pression for a function that optimally separates two classes. The
SVM value is positive for one class and negative for the other.
Based on the SVM value at a point, the confidence of the decision
can be evaluated. The general expression of an SVM limit state
function is given as:

s�x� = b + �
i=1

nSV

�iyiK�xi,x� = 0 �2.1�

where xi are support vectors, yi� �1,−1� are the class labels, K is
a kernel function, b is the bias, and �i are the Lagrange multipliers
associated to the support vectors. The support vectors and the
Lagrange multipliers are found through the maximization of the
margin, which is the separation between classes yi=sign�s�xi��
=1 and yi=−1 in a high dimensional feature space �21�. Several
choices can be made for the kernel function like the polynomial
and the Gaussian kernel. The Gaussian kernel used in this research
is given as:

−��x − xi�
2/2�2�

Fig. 3 Example of three “behaviors.” Definition of explicit
boundaries in the parameter space „x1 ,x2… corresponding to
the behaviors.
K�xi,x� = e �2.2�
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VMs are a very general tool, as the limit state function can be
onconvex and form disjoint subregions in a high dimensional
pace. As classifiers, SVMs are more attractive than neural net-
orks because they provide an explicit limit state function, and
verfitting is avoided.

2.3 Adaptive Sampling for Minimal Number of
xperiments. In order to reduce computational costs, the number
f geometry classifications for constructing the limit state function
hould be minimized. However, using too few samples can com-
romise the accuracy of the SVM limit state function. The accu-
acy of the limit state function depends both on the quantity and
he quality of the training samples. Therefore, an adaptive sam-
ling technique is used to reduce the number of samples required
o generate an accurate SVM limit state function �Fig. 4�.

An initial estimate of the limit state function is made using a
easonably small training set consisting of Ninit samples. The de-
ign of experiments used to select the initial samples should be as
niformly distributed in the space as possible. For this purpose
echniques such as centroidal Voronoi tessellations �CVT� �12�
an be used. The initial estimate of the limit state function is then
efined through the selection of new samples, based on the fol-
owing criteria �14,15�:

• The samples are added on the limit state function, as the
probability of misclassification is highest at this location.

• The new samples are added in the sparsely populated re-
gions of the space.

The above objectives are realized by adding new samples on
he limit state function while maximizing the distance to the near-
st existing training sample �15�

ax
x,z

z

.t. �x − xi� � z �2.3�

�x� = 0

he SVM limit state function is updated by adding new samples
ccording to the above criteria until a stopping criterion is met
14�. The SVM kernel parameters are updated after each sample
valuation by minimizing the number of support vectors nSV.

2.4 Probability of Failure. The probability of occurrence of
nonacceptable system performance, referred to as probability of

Fig. 4 Adaptive sampling method to
ailure, is defined as

21010-4 / Vol. 132, FEBRUARY 2010
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pf�xn,t� =	
�f

fX�x;xn,t�dx �2.4�

where fX�x ;xn , t�=
k=1
nv fxk

�xk ;xk
�n� , tk�

1 is the joint probability den-
sity function �PDF� of the random geometric measures x
= �x1 x2 . . . xnv�T. This function characterizes the random pro-
cess that generates different outcomes of the target multibody sys-
tem. The nominal geometric measures xn= �x1

�n� x2
�n� . . . xnv

�n��T

and the corresponding tolerances t= �t1 t2 . . . tnv�T determine the
intervals of the distributions of geometric measures:

xk
�n� − tk � xk � xk

�n� + tk

fxk
�xk���0 xk � �xk

�n� − tk,xk
�n� + tk�

=0 otherwise
� k � �1,2, . . . ,nv�

�2.5�
The integration domain � f in Eq. �2.4� is the subspace of all
nonacceptable geometric configurations—the failure domain.

Assuming that:

• the joint PDF fX�x ;xn , t� can be determined a priori for any
configuration of nominal geometric measures xn and associ-
ated tolerances t; and

• the boundary of the failure domain �the limit state� can be
described as a function of the geometric measures, g�x�=0;

the probability of failure can be estimated using a FORM/SORM
�5� or another technique such as the advanced mean value �AMV�
method �22�. Such methods may be inappropriate in the case of a
multibody system whose responses might be discontinuous with
highly nonlinear limit state functions, sometimes representing the
boundaries of disjoint failure domains.

MCS offers an alternative way of estimating the solution of Eq.
�2.4�. The basic idea of MCS is to create multiple realizations x of
the random process characterized by fX�x ;xn , t�, and to classify
each realization as either failure �unacceptable system perfor-
mance� or safe �acceptable system performance�. Hence, the real
world random process that generates either functioning or failing
systems is replicated, and a great amount of virtual empirical data
is created. From these data, the probability of emergence of non-
acceptable system performance can be estimated as

p̃f�xn,t� =
Nf�xn,t�

N
�2.6�

1

nstruct an SVM limit state function
Assuming statistical independence of all geometric measures.
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here Nf�xn , t� is the number of realizations x that were classified
s failure and N is the total number of realizations created. The
ain advantages of MCS are its simplicity and generality: MCS

an be implemented easily and any distribution of the geometric
easures can be processed.
It can be shown that the maximum relative error of MCS-based

robability of failure estimation, within a 95% confidence inter-
al, is equal to �5�:

� =
p̃f − pf

pf
= 2�1 − pf�

Npf
� 2 1

Nf
�2.7�

s expected, the relative error decreases as N increases. Also, the
rror can become large for very small values of pf. Hence, if the
robability of nonacceptable system performance is small, as is
he usual case when dealing with geometric tolerances, traditional

CS requires evaluation of a large number of trials in order to
btain accurate results.

The efficiency of MCS can be improved in two ways as fol-
ows:

• Reduction in the number of trials required for a given accu-
racy.

• Reduction in the computational cost of each individual trial.

The first point is addressed using variance reduction techniques
uch as importance sampling and stratified sampling �5�. Impor-
ance sampling, in a simple form, can be implemented efficiently.
t allows setting up freely the joint PDF to be employed in MCS
or the generation of geometric realizations. Using this function,

fx
�bias��x ;xn , t�, referred to as the biasing function, and the real
DF of the actual process fX�x ;xn , t�, the probability of failure is:

p̃f�xn,t� =
1

N�
k=1

N

e�xk�
fX�xk;xn,t�

fx
�bias��xk;xn,t�

,

e�xk� = �0 xk � safe region

1 xk � failure region
� �2.8�

he second point is tackled through the use of an explicit limit
tate function g�x� constructed using an SVM. In this case, the
lassification of a geometric configuration consists of checking the
ign of g�x�, which has the form of a series expansion. Thus, a
igh number of trials can be realized with a reasonable computa-
ional cost. Figure 5 shows an example of MCS using a limit state
unction, which is approximated by an SVM.

2.5 RBDO. The RBDO problem can be stated as follows:

in
xn,t

F�xn,t�

Fig. 5 Explicit failure region bound
MCS „right…. Example with two rand
and �2.
.t. pf�xn,t� = P�g�x� � 0� � pf ,target �2.9�

ournal of Mechanical Design
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where F is the objective function and g is a limit state or perfor-
mance function. The limit state equation g�x�=0 divides the space
of uncertain geometric measures into a failure region �g�x��0�
and a safe region �g�x��0�. pf ,target is the target probability of
failure and x is the vector of a geometric realization. The random
quantities are drawn from the interval that is defined by the nomi-
nal geometric values xn and the corresponding tolerance assign-
ments t. Note that there can be several limit state functions for the
same system, each related to a different failure mode.

As mentioned in the previous paragraph, the probability of fail-
ure can be evaluated using Monte-Carlo simulations. However,
the inclusion of a Monte-Carlo process within an optimization
loop is not recommended for three main reasons:

• It is time consuming;
• The probability calculated by Monte-Carlo simulations is

noisy due to the randomness of the sampling; and
• The probabilities are typically low and can vary by orders of

magnitude during the optimization process.

In order to regularize the probabilistic constraint, the reliability
index � is used as a substitute for the probability of failure:

� = − 	−1�pf� �2.10�

where 	 is the standard normal cumulative density function.
The optimization problem is then rewritten as:

Min
xn,t

F�xn,t�

s . t . �target − ��xn,t� � 0 �2.11�
In order to improve computational efficiency, the reliability index
is approximated by a regression function. This is done by first
generating a uniform DOE in a space spanned by the nominal
dimensions and the associated tolerances. MCS are run for each
sample, thus providing the corresponding probability of failure.
The purpose of this first DOE is to identify the region �a hyper
rectangle� of the space where the probability of failure is smaller
than a given value �which is larger than the target probability of
failure used in the RBDO problem�. In this subspace, a second
DOE is performed and the reliability index obtained via MCS is
approximated by a support vector regression �SVR� �23� function
based on a Gaussian kernel.

3 Application Example
The proposed optimization scheme was applied to a web cutter

mechanism. Uncertain geometric measures are assumed to be the
distances Q-A �denoted as x1�, A-B �denoted as x2�, and B-O
�denoted as x3�, as depicted in Fig. 6. The performance of the web
cutter mechanism depends strongly on these measures. In the fol-

constructed with an SVM „left…, and
variables x1 and x2 with means �1
ary
om
lowing sections, specific details of all previously described tech-
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iques are presented, ultimately allowing for a probabilistic opti-
ization of the geometric configuration of the web cutter
echanism. The application example is aimed at illustrating the

resented concepts. As a result of some simplifications of real
orld physical relations, practical applicability cannot be ex-
ected.

3.1 Multibody Simulation. The web cutter was modeled as a
lanar mechanism consisting of five rigid bodies. A schematic
icture of the mechanism is given in Fig. 7. Only revolute joints
nd rigid joints are present in the model. Bodies 1 and 3 are
onnected to the ground through revolute joints at points Q and O.

revolute joint at point A connects bodies 1 and 2, and another
evolute joint at point B connects bodies 2 and 3. Two rigid joints
t point B connect bodies 2 and 4, and bodies 3 and 5, respec-
ively. All bodies are assumed to be beams of constant density and
onstant cross section.

A body coordinate formulation is used, whereby all employed
athematical relations are expressed in terms of coordinates,
hich uniquely define the location of each individual body in

wo-dimensional space �24�. An inverse simulation of the web
utter dynamic behavior is performed, providing the angular co-
rdinate of body 1 
1 as motion input �24�. The reaction forces at
ach joint are extracted �24�. The only external forces considered
re the web resistance forces. They are applied at points C and D,
nce the cutting event is detected. The magnitude of these forces
s assumed to be constant.

Fig. 6 Sketch of a simplified web cutter mechanism
Fig. 7 Multibody model of a web cutter mechanism

21010-6 / Vol. 132, FEBRUARY 2010
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The simulation scenario is defined by the motion input 
1�t�.
This input imposes a predefined angle, zero angular velocity, and
zero angular acceleration on body 1 at time step one. Over a
predefined initial time period, the angular velocity is smoothly
increased to a target value. After that, it is held constant. Simula-
tion is performed until body 1 has undergone one complete rota-
tion at the target angular velocity.

The inputs of the “Simulation” module are the geometric mea-
sures �x1 ,x2 ,x3�, which determine the local coordinates of points
Q, A, B, and O. Simulation outputs are all body and point coor-
dinates and their derivatives, and all applied and constraint forces.
Each of these quantities is a function of time.

3.2 Functionality Calculation. The following quantities are
calculated based on the trajectory data received from the “simu-
lation” module.

• The minimum and maximum gap over time between the
cutting blade edges �functionality indices 1 and 5, respec-
tively�.

• The minimum gap over time between the cutting blade bod-
ies �functionality index 2�.

• The maximum value over time of the displacement in the
longitudinal and vertical web direction between the web po-
sition and cutting blade position, which arises during the
interaction of the web and cutting blades �functionality in-
dices 3 and 4, respectively�.

• The extent of the web cutter working space in the longitu-
dinal and vertical direction of the web movement �function-
ality indices 6 and 7, respectively�.

The processing of these indices with the aim of evaluating the
system operation success is described in Sec. 3.4.

3.3 Load Calculation. The calculation of the load indices is
performed in four steps:

1. Calculation of longitudinal and transversal cutting forces
and cutting moments, yielding three measures per body,
each depending on one spatial coordinate and time.

2. Calculation of normal and shear stresses, yielding two mea-
sures per body, each depending on two spatial coordinates
and time.

3. Calculation of equivalent normal stresses, merging normal
and shear stresses into one variable.

4. Calculation of maximum equivalent normal stresses over
both spatial dimensions and time, yielding one scalar mea-
sure per body, which is used as load index.

Calculation of cutting forces and cutting moments is based on
the rigid body assumption and Newton’s second law. The follow-
ing relations are used:

FL�x,t� = −	
0

x

s̈L�Adx̃ + �
k

Fk
�L�I�xFk,l��x� �3.1�

FT�x,t� = −	
0

x

s̈T�Adx̃ + �
k

Fk
�T�I�xFk,l��x� �3.2�

M�x,t� = −	
0

x

FT�x̃,t�dx̃ + �
k

MkI�xMk,l��x� �3.3�

where, FL, FT, and M are the longitudinal cutting force, transver-
sal cutting force, and cutting moment; s̈L and s̈T are the longitu-
dinal and transversal beam element accelerations; Fk

�L�, Fk
�T�, and

Mk are the longitudinal and transversal components of the k-th
external force and the k-th external moment; xFk and xMk are the
corresponding coordinates of application of these loads; �, A, and

x are the density, cross sectional area, and length coordinate of the
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eam element; and IS�x� is a switch function, which is equal to
ne if x�S and zero otherwise.2

Normal and shear stresses are calculated based on the cutting
easures �25�. For the determination of equivalent normal

tresses, denoted as �̄i�x ,y , t�, the distortion energy hypothesis is
mployed �26�. The load indices �̄max,i are calculated as follows:

�̄max,i = max
�x,y,t�

�̄i�x,y,t�, i = 1, . . . ,5 �3.4�

3.4 Performance Evaluation. The overall system perfor-
ance is classified as unacceptable �failure� if the load and func-

ionality indices, received from the corresponding modules, indi-
ate the occurrence of at least one of the following events.

• Failure events 1–5: One of the received load indices �the
maximum equivalent normal stress of a system component
over space and time� is greater than the associated pre-
defined maximum allowed normal stress. Occurrence of
such event corresponds to system failure due to overstress-
ing.

• Failure event 6: The minimum gap �over all time� between
the cutting blade edges �functionality index 1� is greater
than a predefined value. Occurrence of this event corre-
sponds to web cutter malfunction because of its inability to
successfully perform the cutting task as a result of the cut-
ting blade edges remaining too far apart at all times.

• Failure event 7: The minimum gap �over all time� between
the cutting blade bodies �functionality index 2� is negative.
This event corresponds to the intrusion of the cutting blades.

• Failure events 8 and 9: The maximum longitudinal or verti-
cal web displacement during cutting �functionality indices 3
and 4� is greater than an associated predefined maximum
value. Occurrence of one of these events corresponds to web
cutter malfunction because the movement of the web is too
strongly disturbed by the cutting blades while cutting is per-
formed.

• Failure events 10–12: The maximum gap between the cut-
ting blade edges �functionality index 5�, the working space
in longitudinal web direction �functionality index 6�, or the
working space in the vertical web direction �functionality
index 7� is greater than an associated predefined maximum
value. Occurrence of one of these events corresponds to an
inappropriate shape of the web cutter, violating demands on
its compactness.

Evaluation of the above events requires the feasible ranges of
ll functionality indices to be provided a priori as constants of the
erformance evaluation module. If none of the above cases is
ound to be true, the system performance is classified as accept-
ble.

3.5 Estimation of Probability of Failure. MCS-based esti-
ation of the probability of failure, as described in Sec. 2.4, re-

uires the joint PDF of the dimensions x= �x1 x2 x3�T, as well as
nother PDF, the biasing function. Both PDFs are constrained
y the nominal values xn= �x1

�n� x2
�n� x3

�n��T �which determine the
arginal means� and the tolerances t= �t1 t2 t3�T �which deter-
ine the marginal variances and bounds�. Each dimension xi �i
1,2 ,3� is assumed to be statistically independent and to be as-

ociated to a marginal PDF, which is a truncated Gaussian. An
xample of such PDF is displayed in Fig. 8. Truncation corre-
ponds to the fact that if tolerances are not met during manufac-
uring, the corresponding component is discarded. The actual joint

2As an alternative to calculating the cutting measures analytically, they can be
alculated numerically during simulation. To accomplish that, a rigid joint can be
ntroduced for each body and, at each time step, shifted over the whole body length.
he cutting measures can then be found as the joint-related reaction forces and

oments, emerging at each considered joint position.
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PDF of the dimensions is obtained by multiplying all marginal
PDFs. The biasing function is chosen as a joint uniform distribu-
tion over the space of allowed dimensions. In our study, MCS are
performed in packets of 105 samples.

3.6 Optimization of Nominal Measures and Tolerances.
The following explicit mathematical relation is employed for the
calculation of tolerance-related manufacturing costs of the web
cutter mechanism:

C�t� = �
k=1

3
ck

tk
, ck = 1 ∀ k �3.5�

This relation has been freely chosen. The influence of nominal
values on the overall manufacturing costs is neglected.

In order to obtain optimal tolerance assignments, the following
optimization problem is solved by means of sequential quadratic
programming �SQP�:

min
xn,t

C�t�

s.t. �target − �SVR�xn,t� � 0

x1,tl
�n� � x1

�n� � x1,tu
�n� t1,tl � t1 � t1,tu

x2,tl
�n� � x2

�n� � x2,tu
�n� t2,tl � t2 � t2,tu

x3,tl
�n� � x3

�n� � x3,tu
�n� t3,tl � t3 � t3,tu �3.6�

In this problem statement, �SVR�xn , t� denotes the SVR-function
that approximates the reliability index �see Sec. 2.5� and �target
denotes the target reliability index, which corresponds to a prob-
ability of failure of pf ,target=	�−�target�, where 	 is the standard
normal cumulative density function. The lower and upper bounds
of the optimization variables xn and t, denoted as x1,tl

�n� , x1,tu
�n� , x2,tl

�n� ,
x2,tu

�n� , x3,tl
�n� , x3,tu

�n� , t1,tl, t1,tu, t2,tl, t2,tu, t3,tl, and t3,tu, are equal to the
limits of the regression function domain.

4 Results
In order to get an insight into the decomposition of the space of

random geometric measures of the web cutter and to quantify the
accuracy of the SVM-based approximation of the limit state func-
tion, a very large set of reference data was created. This set con-
sisted of a uniform three-dimensional grid, comprising 553

=166,375 sample geometric realizations, which were generated

Fig. 8 Assumed real world marginal PDF of a geometric mea-
sure xi
over the following intervals:
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0.091 � x1 � 0.11, 0.682 � x2 � 0.729, 0.986 � x3 � 1.013

ach sample was analyzed via multibody simulation �Secs. 2.1
nd 3.1–3.4; note that it should be emphasized at this point that
his large number of function calls is just for the purpose of com-
arison, and that the actual approach uses far less samples, as
escribed subsequently�. The regions in the space of uncertain
eometric measures that are associated to the failure events de-
cribed in Sec. 3.4, and the resulting exact overall safe domain are
resented in Fig. 9. Some of the failure domains are found to be
early linear �Subfigs. 2, 6, 7, and 10�, while some are highly
onlinear �Subfigs. 1, 4, 5, 8, and 9�. The “global” limit state
unction, boundary of the overall safe domain �depicted in the
entral subfigure�, comes out to be a highly nonlinear closed sur-
ace in the space of random geometric measures. This domain is
haracterized by sharp edges �discontinuities in the first partial
erivatives�.

An SVM-based approximation of the limit state �Sec. 2.2� was
btained using 178 sample realizations of the uncertain geometric
easures. The ranges of these measures are:

0.091 � x1 � 0.11, 0.682 � x2 � 0.729, 0.986 � x3 � 1.013

n initial set of 40 samples was distributed uniformly over the
onsidered space. The remaining samples were chosen adaptively
Sec. 2.3�. The width parameter of the Gaussian kernel used was
pdated after the addition of each new sample, as mentioned in
ec. 2.3. A width parameter of 0.1 was used to construct the final
VM limit state function �Fig. 10�. In the figure, the large dots
epresent the samples used for the training of the SVM-function.
he small dots represent all samples of the large reference data
et, which were falsely classified by the SVM, thus providing a
measure” of the error of the approximated limit state function.

It is noticeable that the adaptive sampling scheme successfully
ielded an increased sampling density in the vicinity of the limit
tate while avoiding clustering effects. Hence, each sample was

Fig. 9 Configuration space, spanned by un
mains associated to each failure event „Sub
haracterized by a high content of unique information about the
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location of the limit state. Reclassification of the samples of the
reference data set using the SVM-function yielded a correct re-
classification rate of 96.6%.

In order to define an appropriate domain for the regression of
the reliability index �Secs. 2.4, 2.5, and 3.5�, 150,000 sample
nominal values of the uncertain geometric measures of the web
cutter and corresponding tolerances were distributed over the �six-
dimensional� subspace with the following bounds:

0.093 � x1
�n� � 0.109, 0.688 � x2

�n� � 0.725,

0.991 � x3
�n� � 1.01

10−5 � t1 � 0.016, 10−5 � t2 � 0.037, 10−5 � t3 � 0.019

The samples were analyzed by means of MCS, employing the
previously generated SVM-function �note that there is no actual
simulation call at this point but simply SVM evaluations�. All
samples whose associated reliability indices were located between
−� and 2.8 �⇔pf � �2.56·10−3 ,1�� or between 5 and � �⇔pf

� �0,2.86·10−7�� were discarded. The minimum and maximum
coordinate values of the remaining samples were selected as the
limits of the regression function domain:

0.095 � x1
�n� � 0.098, 0.69 � x2

�n� � 0.7, 0.991 � x3
�n� � 0.997

1.3 · 10−5 � t1 � 332.3 · 10−5,

3.3 · 10−5 � t2 � 987.7 · 10−5, 6.3 · 10−5 � t3 � 609.9 · 10−5

Two sets of samples stemming from that region were generated by
means of CVT: a training set comprising 1000 samples and a
testing set comprising 5000 samples. The probabilities of failure
and the corresponding reliability indices were calculated using
MCS for all these samples. The training set was used for the
generation of the regression function by means of SVR. The re-

tain geometric measures x1, x2, and x3. Do-
. 1–12… and overall safe domain.
cer
gression function accuracy was assessed based on the testing set.
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eevaluation of the testing samples of the region of interest using
he SVR-function yielded a mean absolute difference between

CS-based and SVR-function-based reliability index estimates
f mean�xn , t�Test

���MCS−�SVR��=0.35. In terms of the probability
f failure, this difference corresponds to mean�xn , t�Test

��pf ,MCS

pf ,SVR��=0.09%. The associated maximum values are
ax�xn , t�Test

���MCS−�SVR��=1.38 and max�xn , t�Test
��pf ,MCS

pf ,SVR��=1.06%, respectively.
Using the SVR-function, the RBDO problem �3.6� was solved

ased on SQP �Secs. 2.5 and 3.6� with an analytic evaluation of all
acobians. A target reliability index of �target=3.29 was chosen,
hich corresponds to a target probability of failure of pf ,target
0.05%. As a start of the optimization, the center point of the

pace of considered nominal measures was used. Starting toler-
nces were defined as the minimum values considered. Starting
ominal measures and starting tolerances formed a feasible point
ith no active constraints and a cost value of 21,735. After 38
QP iterations, optimization converged to the following optimal
olution:

xn
�opt� = �9.83 69.85 99.73 �T · 10−2

t�opt� = �2.4 4.78 3.17 �T · 10−3

or this solution, the probabilistic constraint is active; all other
onstraints are inactive. The cost at the solution is equal to 942.
he distance between the starting and optimal point is equal to:

xn
�opt� − xn

�Start� = �1.7 3.3 3.1 �T · 10−2

t�opt� − t�Start� = �2.38 4.74 3.1 �T · 10−3

ultiple starting nominal measures were generated by spanning a
rid of 63=216 samples over the space of considered nominal
easures. Optimization was reexecuted for each sample, each

ime yielding a convergence to the aforementioned solution.
For the sake of comparison, the actual reliability index associ-

�opt� �opt�

Fig. 10 SVM-based approximation of the li
training of the SVM-function „large dots…, and
falsely reclassified based on the SVM-functi
ted to xn and t was estimated by means of MCS and is
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equal to �MCS�xn
�opt� , t�opt��=3.68, which corresponds to a prob-

ability of failure of pf ,MCS�xn
�opt� , t�opt��=0.01%. Hence, the SVR-

function yielded a conservative estimate of system reliability at
xn

�opt� and t�opt�.
The solution of the RBDO problem is depicted within the space

of uncertain geometric measures �Fig. 11�. The large dot �at the
intersection point of the lines� represents the optimal nominal geo-
metric configuration xn

�opt�. The rectangles represent the associated
optimal tolerance assignments t�opt�. The outer surface, serving as
a reference, indicates the SVM-based limit state approximation.
The inner surface gives an impression of the real world distribu-
tion of geometric measures xi�i=1,2 ,3�, which results from the
RBDO solution. It is an isosurface of the joint PDF
fX�x ;xn

�opt� , t�opt��, which encloses 90% of all possible geometric
outcomes.

5 Conclusion
This study describes a novel method to perform a reliability-

based design and tolerance optimization for multibody systems.
The core of this approach is based on the notion of explicit design
space decomposition, whereby the boundary of the failure domain
is constructed explicitly using an SVM. SVM-based explicit limit
state functions enable an efficient calculation of probability of
failure, as well as an efficient adaptive sampling for the reduction
in the number of function evaluations. The probabilistic constraint
of an RBDO problem can subsequently be replaced by an approxi-
mation allowing the problem to be solved efficiently. The ap-
proach, which was applied to a web cutter, can handle an arbitrary
number of failure modes, arbitrary probabilistic distributions of
the uncertain variables, discontinuous system responses, and non-
linear and disjoint limit states. It can be automated to a large
extent and can provide the designer with more insight into com-
plex system dependencies such as an explicit knowledge of where

state „meshed surface…, samples used for
mples of the reference data set, which were
„small dots…
mit
sa
the failure regions are.
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The methodology has been shown to be computationally fea-
ible in the case of three uncertain variables. Local errors of the
esign space decomposition occur mainly in the vicinity of the
oundaries. Such errors would require some degree of conserva-
iveness �e.g., a reduction in the safe region volume� if a real
orld application is tackled.
Subsequent work will focus on investigating the efficiency of

he proposed approach for larger scale multibody systems with
ore geometric properties and tolerance intervals. Also, the accu-

acy of the design space decomposition will be increased further
y improving the convergence properties of the adaptive sampling
cheme.

Probabilistic SVMs will be introduced, which map the distance
etween a sample and the optimal hyperplane to the confidence of
lassification as “safe.” This allows for an easy assessment of the
xpected accuracy of an SVM model and, more importantly, a
ustomization of the degree of conservativeness of the methodol-
gy. The latter is achieved by associating the limit state, not to the
ominal confidence level of 50%, but to a higher confidence level
f choice �e.g., 99%�, meaning that the safe region is composed of
eliably safe configurations only. A change in the target confidence
evel does not require retraining of the SVM-function. It is there-
ore feasible to generate a series of solutions, each one associated
o a different degree of conservativeness.

In order to apply the proposed methodology in practice, a user-
ptimized design tool can be developed, which automates design
pace decomposition, MCS, and probability of failure regression
nd optimization, leaving only the nominal classification algo-
ithm �i.e., the algorithm for modeling- and simulation-based clas-
ification of an arbitrary outcome of the uncertain system vari-
bles as either safe or “failure”� and the probabilistic distributions

Fig. 11 Optimal nominal measures „dot at
tolerances „represented by rectangles… of th
based approximation of the limit state. Inn
density function of a geometric system outco
value of 7.01Ã10−4.
f the uncertain variables to be provided by the user.
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Nomenclature
x  vector of uncertain geometric measures, x= �x1 x2 x3�T

xn  vector of nominal values of x, xn= �x1
�n� x2

�n� x3
�n��T

t  vector of tolerances of x, t= �t1 t2 t3�T

pf  probability of failure, pf = pf�xn , t�
�  reliability index, �=−	−1�pf�
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