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Abstract

This article presents a method for the explicit construction of limit state functions using Support Vector Machines (SVM). Specifically, the
approach aims at handling the difficulties associated with the reliability assessment of problems exhibiting discontinuous responses and disjoint
failure domains. The SVM-based explicit construction of limit state functions allows for an easy calculation of a probability of failure and enables
the association of a specific system behavior with a region of the design space. The explicit limit state function can then be used within a reliability-
based design optimization (RBDO) problem. Two problems are presented to demonstrate the successful application of the developed method for
explicit construction of limit state function and reliability-based optimum design.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonlinear problems are often characterized by various and
sudden behavioral changes which are associated with the
presence of critical points. A typical example is a geometrically
nonlinear structure which globally buckles for a load larger
than the limit load. Because these abrupt changes can be
triggered by infinitesimally small modifications of design
parameters or loading conditions, the responses of the system
are discontinuous in a mathematical sense. In the context of
reliability, these slight variations often fall in the range of
uncertainties.

In simulation-based design, discontinuities present a
serious problem for optimization or probabilistic techniques
because it is usually assumed that the system’s responses
are continuous. In optimization, this limits any traditional
gradient-based method or response surface technique. When
considering reliability, discontinuities might hamper the use of
approximation methods such as First Order and Second Order
Reliability Methods (FORM and SORM) [1], Advanced Mean
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Value (AMV) [2], or Monte Carlo simulations [3] with response
surfaces [4].

In addition to discontinuities, nonlinear problems are charac-
terized by disjoint failure regions, thus further limiting the
use of classical approaches to assess probabilities of failure.
These failure regions are often associated with distinct system
behaviors, a phenomenon that is found in structural impact
problems (e.g. vehicle crash) [5].

In order to tackle discontinuities and disjoint spaces, we
propose to decompose the design space by explicitly defining
the boundaries of the failure regions. This is a major difference
compared to traditional simulation-based approaches for which
the limit state functions are defined implicitly (e.g. a threshold
on a response given by a finite element code). By defining
explicit boundaries, one can associate a region of the design
space with a specific behavior. In addition, this provides a way
to handle uncertainties; the calculation of failure probabilities is
made efficient as the verification of the state of a sample (failed
or safe) is straightforward.

With a discontinuous behavior, it is not always possible to
define an a priori threshold defining the boundary between
“failure” and “non-failure”. However, discontinuities can be
detected by data mining techniques such as clustering [6]
which automatically identifies groups of similar responses. It
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is then possible to map these clusters to specific regions of the
design space, thus providing the first step towards the explicit
identification of failure regions.

Several attempts to explicitly decompose the design space
have been proposed in the case of nonlinear transient dynamic
problems. In [7], the optimization of a tube impacting a rigid
wall was performed with respect to its length and thickness. The
goal was to enforce crushing and avoid global buckling while
taking uncertainties into account. The optimization was based
on the decomposition of the design space using hyperplanes
and ellipsoids. While one part of the design space corresponded
to the crushing of the tube, the other one (failure region)
was associated with global buckling. The approach was later
extended to the use of a convex hull for the definition of the
boundaries of a failure region [8].

However, the tools used to create a failure region were
not satisfactory as they were limited to a single convex set,
and therefore did not address the issue of non-convex disjoint
failure domains. In this paper, the approach is generalized by
constructing the boundaries of specific regions of the design
space using Support Vector Machines (SVM) [9,10]. SVM
is a powerful classification tool that allows the construction
of linear or nonlinear optimal “decision functions” between
classes in a multidimensional space. The decision functions
(i.e. the limit state functions) can be non-convex and form
several disjoint subsets.

The explicit design space decomposition is made possible
by first studying the responses with a design of experiments
(DOE) [11]. By using Improved Distributed Hypercube Samp-
ling (IHS), the samples are uniformly distributed in the design
space. The responses, obtained for each DOE sample, are
classified into groups forming clusters. This allows one to
assign a class to each response, thus enabling the use of SVM
to define the boundaries of the failure regions.

The approach is applied to two problems: the first one
demonstrates the construction of an explicit limit state function
for an analytical problem with disjoint failure regions. This
academic problem allows to accurately quantify the error that
is made in reproducing the limit state function. A metric is
introduced to quantify the error between the approximated limit
state function and the actual one. The second problem deals
with the reliability-based design optimization (RBDO) of a
geometrically nonlinear arch exhibiting snap-through. For this
problem, the discontinuities are detected using a clustering
technique. The objective is to minimize the volume while
avoiding global buckling with a given probability.

2. Support Vector Machines

SVM are a classification tool that belong to the
class of machine learning techniques. They are becoming
increasingly popular and have widespread applications in
pattern recognition. The main features of SVM lie in their
ability to define complex decision functions that optimally
separate two classes of data samples.

The purpose of this section is to provide the reader with a
first overview of the SVM algorithm. The basic SVM theory is
presented through a detailed explanation in the case of a linearly
separable data set. It is then extended to the case where the data
is not linearly separable.

2.1. Linear decision function

To introduce SVM, we define a set of N training points xi in
a p dimensional space. Each point is associated with one of two
classes characterized by a value yi = ±1. The SVM algorithm
finds the boundary (decision function) that optimally separates
the training data into the two classes. In the case of linear
decision functions, the basic idea is to maximize the “margin”
between two parallel hyperplanes that separate the data. This
pair of hyperplanes is required to pass at least through one of
the training points of each class, and there cannot be any points
inside the margin (Fig. 1). The points that these hyperplanes
pass through are referred to as support vectors. The optimum
decision function is half way between these two previously
described hyperplanes. One of the outer hyperplanes consists
of those points which satisfy:

w.x + b = +1 (1)

The other hyperplane contains the points that follow:

w.x + b = −1, (2)

where w is the vector of hyperplane coefficients, x is the vector
of variables and b is the bias. All the points of the class
y = +1 lead to a positive value of SVM and all the points
in the class y = −1 are “negative”. Eqs. (1) and (2), and the
constraint that no point can lie between the two aforementioned
hyperplanes, can be combined in a single global constraint
defined as follows:

yi (w.x + b) − 1 ≥ 0 (3)

The perpendicular distance between the two support hyper-
planes is 2

‖w‖
. Therefore, determining the support hyperplanes

(i.e. solving for w and b) reduces to the following optimization
problem:

min
w,b

1
2
‖w‖

2

yi (w.xi + b) − 1 ≥ 0 1 ≤ i ≤ N
(4)

Fig. 1. Linear decision function separating class 1 from class 2.
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This is a Quadratic Programming (QP) problem since the
objective function is quadratic and the constraints are linear.
Problem (4) is convex and can be solved efficiently with
available optimization packages. As a result, the optimal w, b,
and the Lagrange multipliers λi at the optimum are obtained.
From this, the classification of any test point x is obtained by
the sign of the following function:

s = b +

N∑
i=1

λi yi xi .x (5)

Following the Kuhn and Tucker conditions, the Lagrange
multipliers associated with the support vectors will be strictly
positive while the others will be equal to zero. In general, the
number of support vectors is a small fraction of the total number
of training points. Eq. (5) can be rewritten with respect to the
number of support vectors N SV :

s = b +

N SV∑
i=1

λi yi xi .x (6)

In the case where the data is not linearly separable, the
optimization problem (4) will be infeasible. The inequality
constraints are then relaxed by the introduction of nonnegative
slack variables ξi which are minimized through a penalized
objective function. The relaxed optimization problem is

min
w,b,ξ

1
2
‖w‖

2
+ C

N∑
i=1

ξi

yi (w.xi + b) − 1 ≥ −ξi 1 ≤ i ≤ N

(7)

The coefficient C is referred to as the misclassification cost.
In the dual formulation of Problem (7), C becomes the upper
bound for all the Lagrange multipliers.

2.2. Nonlinear decision function

SVM can be extended to the case of nonlinear decision
functions by mapping the original set of variables to a higher
dimensional space referred to as the feature space. In this n
dimensional feature space, the new components of a point x are
given by (φ1(x), φ2(x), . . . , φn(x)) where φi are the features.
The nonlinear decision function is obtained by formulating
the linear classification problem in the feature space. The
classification is then obtained by the sign of

s = b +

N SV∑
i=1

λi yi < Φ(xi ),Φ(x) > (8)

where Φ = (φ1(x), φ2(x), . . . , φn(x)) and <, > is the inner
product.

The inner product in Eq. (8) forms a kernel K , so that the
decision function is written:

s = b +

N SV∑
i=1

λi yi K (xi , x) (9)
2.3. Types of kernels

The two most commonly used kernels functions, the
polynomial and the Gaussian kernels are presented. Some other
kernels that may be used are multilayer perceptrons, Fourier
series and splines.

2.3.1. Polynomial kernels
A polynomial kernel is defined as

K (xi , x) = (< xi , x > +1)d (10)

where d is the degree of the polynomial. In Fig. 2, a second
degree polynomial kernel is used to classify a data set into two
classes. The classes are represented by blue asterisk and red
square data points. The zero value isocontour is the optimum
decision function, which splits the space into a negative and
positive region. The −1 and +1 isocontours pass through the
support vectors of each class (circles on the figure).

Fig. 2. Two-dimensional second degree polynomial separating two classes. The
zero value isocontour is the optimum decision function and the support vectors
are depicted with circles.

2.3.2. Gaussian kernels
A Gaussian kernel is defined as:

K (xi , x) = exp
(

−
‖xi − x‖

2

2σ 2

)
(11)

where σ is the width parameter. An example of a Gaussian
kernel is provided in Fig. 3.

2.4. General features of SVM

SVM has several qualities which make it a very powerful
tool for pattern recognition and classification. These qualities
make it a very useful tool in probabilistic design and
optimization. Some features of SVM are:

1. SVM is multidimensional: It is capable of classifying data in
the multidimensional space. This is a key factor in structural
design optimization where the number of design variables
in some cases is very large. In Fig. 4 a Gaussian kernel in
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Fig. 3. Two-dimensional Gaussian kernel separating two classes. The two
classes are shown by blue asterisk and red squares. The zero value isocontour
represents the optimum decision function and the support vectors are depicted
with circles.

Fig. 4. Three-dimensional Gaussian kernel separating the two classes shown
by blue asterisk and red squares.

three dimensions is used to optimally define the boundary
between class 1 (blue asterisk) and class 2 (red square).

2. Optimal decomposition: There can be several ways to
separate two classes of data. However, SVM decomposes
the design space by an optimal separating function which
maximizes the margin between the classes.

3. Separation of disjoint regions: SVM is capable of identifying
disjoint regions. Hence, it can be applied to problems for
which the limit state function forms the boundaries of
disjoint failure regions.

4. SVM used as regression tool: In addition to the classification
of data, SVM can also be used for regression [12,13].

3. Methodology for explicit identification of failure regions

The methodology for the explicit failure region identification
with SVM is presented in this section. The first step consists of
performing a design of experiments (DOE) [14] in which the
random variables are sampled. The responses of the system for
the DOE samples are then evaluated and classified into distinct
classes that correspond to failure or safe system behaviors.
These classified design configurations are then used as training
points for the SVM algorithm. The steps are summarized in
Fig. 5.

Fig. 5. Methodology for explicit failure region identification.

3.1. Step 1: Design of experiments — IHS

There exist several DOE techniques such as Random
Sampling, Latin Hypercube Sampling (LHS) [15], D-
optimal sampling [11], Optimal Latin Hypercube Sampling
(OLHS) [16]. In our approach, the training samples are
generated using an Improved Distributed Hypercube Sampling
(IHS) [17]. IHS constitutes an improvement compared to the
traditional LHS as it uniformly distributes samples over the
design space and therefore avoids clustering of information.
Fig. 6 provides an example of LHS and IHS samplings.

3.2. Step 2: Estimation and classification of responses

The response of a system for each training sample is
obtained using a finite element software such as ANSYS.
The responses are then classified using a threshold value or
a clustering method such as K-means [18] or hierarchical
clustering [6,19]. The classification of responses into two
distinct classes (e.g. safe or failed) provides the information
needed by the SVM algorithm to generate the optimal
separating function (i.e. limit state function). Fig. 7 provides
an example of clustering detection using K-means. The widely
used K-means clustering technique, which is used for the
present work, is explained in the Appendix A.

3.3. Step 3: Definition of an explicit limit state function

Following the classification of the response into two classes,
SVM provides an explicit limit state function in terms of
the random variables. In the following section, several factors
influencing the accuracy of SVM are considered.
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Fig. 6. Two-dimensional sample distribution using LHS and IHS respectively.
Fig. 7. Classification of data into two clusters using K-means.

4. Influence of training sample size and kernel parameters

For constructing an accurate limit state function, it is
important to choose an appropriate number of training samples.
However, function evaluation at a single training point can be
quite expensive computationally, and hence, an optimal number
of points needs to be selected. In addition, the limit state
function may vary depending on the type of kernel and values
of associated parameters.

4.1. Study of the influence of training sample size. Convergence
measure

In order to find the appropriate number of training samples
for a particular problem, the evolution of SVM with respect
to the number of training points is studied. For this purpose,
another set of nconv points are generated using IHS. These
points are referred to as “convergence” points. For a particular
number of training samples, the value of SVM at each of these
convergence points is calculated. A vector is then constructed
that contains the relative changes in SVM values for each of
the convergence points between two successive sets of training
samples. The successive change in limit state function with the
increase in number of training samples is quantified as the norm
of this vector:

∆k =

√√√√nconv∑
i=1

(
si

k−1 − si
k

si
k

)2

(12)

where si
k refers to the SVM value for the i th convergence point

at iteration k. ∆k is the norm of the relative change of SVM,
measured on the convergence points, between iteration k − 1
and k. An example of the effect of training sample size is given
in Fig. 9. Initially, the increase of the number of training points
has a large impact on the limit state function generated by
SVM. However, this variation between successive limit state
functions decreases gradually as the number of training samples
increases. This behavior is as expected since, as more training
sample points are added, they add information. However, after
certain limit the information provided by the new points is
redundant and hence, does not contribute much in changing
the function. The training sample size for which the limit state
function becomes steady is selected for the classification.

4.2. Study of the influence of kernel parameters. Introduction
of an error measure

Because of its generality, the Gaussian kernel is chosen for
this study. However, the width parameter σ in the Gaussian
kernel, as described in Eq. (11), has to be chosen carefully.

In order to perform this study, known analytical limit state
functions are used so that the error between the predicted
and actual functions can be evaluated accurately. The number
of training samples is kept constant, and different values of
σ are used to generate the separating function using SVM.
The corresponding limit state functions are then compared to
the actual analytical ones. For measuring the error, Ntest test
samples are generated by IHS. By generating a large number of
test points, the error can be assessed by calculating the fraction
of misclassified test points for each candidate limit state for a
given value of σ . A test sample point for which the sign of SVM
does not match the sign of the actual function is considered
misclassified. That is, the error ε is

ε =

num
((

b +

N SV∑
i=1

λi yi K (xi , xtest)

)
ytest ≤ 0

)
Ntest

(13)
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where xtest and ytest represent a test sample and the
corresponding class value (±1) for the actual (known) limit
state function.

This error measure is used to assess the optimal value for the
width parameter of the Gaussian kernel. In the case where the
actual function is not known, an approach consists of choosing
the width parameter so as to minimize the number of support
vectors.

5. Reliability-based design optimization (RBDO) method-
ology

RBDO [20–22] problems can be formulated as:

min
x̄

F(x̄)

s.t. P(g(x) > 0) ≤ Ptarget
h(x̄) ≤ 0

(14)

where F is the objective function, g is a limit state function, and
h is a set of deterministic constraints. x̄ is the vector of mean
values which are the variables of the optimization problem.
Note that without loss of generality, x can contain random
and deterministic variables. The limit state function g(x) = 0
divides the design space into a failure region g(x) > 0 and
a safe region. Ptarget is referred to as the target probability of
failure. Note that there can be several limit state functions for
the same problem.

5.1. Probability of failure estimate

The calculation of the probability of failure P f can be
achieved through approximation schemes such as Monte Carlo
Simulations (MCS), FORM (First-Order Reliability Method)
or SORM (Second-Order Reliability Method), Advanced-Mean
Value (AMV), etc. In the proposed SVM-based approach it is
natural to use Monte Carlo simulations because the evaluation
of the state of a sample is very efficient.

However, the inclusion of a brute Monte Carlo process
within an optimization loop is not recommended for three main
reasons:

1. It is time consuming.
2. The probability calculated by MCS is noisy due to the

randomness of the sampling.
3. The probabilities are typically low and can vary by orders of

magnitude during the optimization process.

In order to regularize the probabilistic constraint, the
reliability index β is used:

β = −Φ−1(P f ) (15)

with Φ being the standard normal cumulative distribution
function.

5.2. Response surface approximation of the reliability index

The issues related to the use of MCS are also solved using
response surfaces. In order to avoid repetitive and costly Monte
Carlo simulations and create smoother response variations, the
reliability index is approximated by response surfaces [4,23].
The approximation function β̂ is built using the reliability index
values calculated at each of the N training points. In this paper,
the approximation is also performed by SVM but used for
regression [12,13].

The accuracy of the response approximation is measured by
the R square quantity that measures the global error, and the
RMAE (relative maximum absolute error) that measures the
maximum local error.

R2
= 1 −

N∑
i=1

(βi − β̂i )
2

N∑
i=1

(βi − β̄)2

(16)

RMAE =
max(|βi − β̂i |)

σβ

(17)

where βi is the actual reliability index value, β̂i is the
approximated value, and β̄ and σβ are the mean and standard
deviation of the N samples.

The optimization problem becomes

min
x̄

F(x̄)

s.t. β̂(x̄) ≥ βtarget
h(x̄) ≤ 0

(18)

6. Examples

Two test examples demonstrating the efficiency of the
explicit design space decomposition using SVM are presented.
The first problem uses an analytical function to emulate the
case of disjoint failure regions. The second problem represents
an actual structural problem with a discontinuous behavior due
to nonlinearities. Because of the discontinuities, a clustering
technique needs to be used in order to classify the responses.
A reliability-based design optimization is carried out for this
problem.

6.1. Analytical problem with disjoint regions. Design space
decomposition

For this problem, the limit state function is defined by an
analytical function of two variables x1 and x2.

f (x1, x2) = x2 − | tan(x1)| − 1 (19)

This function represents disjoint regions. The region where
f (x1, x2) > 0 is labeled +1 and the complementary region is
labelled −1. The x1 and x2 variables are considered uniformly
distributed variables with ranges [0, 7] and [0, 6] respectively.

6.1.1. Construction of an explicit limit state function
90 training samples generated using IHS are used for

the construction of the limit state function using SVM. A
Gaussian kernel with parameter σ equal to 2.2 is used. The
misclassification coefficient C is set to infinity. Fig. 8 shows
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Fig. 8. Two-dimensional problem: design space decomposition using SVM.
The dotted curve is actual (known) decision function and the solid curve is the
SVM limit state function.

the design space decomposition obtained by SVM. The SVM
limit state function found is represented by the solid curve while
the actual expected function is shown by the dotted curve. The
support vectors xi , Lagrange multipliers and class values are
shown in Table 1. Note that the bias b = 16.8196.

Table 1
Support vector data

Support Vector x1 x2 Lagrange multiplier Class y

1 2.2022 3.4382 87 +1
2 4.0899 3.1685 3,317 +1
3 4.6404 5.6629 317 −1
4 6.9213 0.8764 65 −1
5 5.2697 5.5955 1,696 +1
6 5.1124 4.3146 6,520 +1
7 5.4270 2.2247 105 +1
8 4.1685 2.0899 427 −1
9 4.4831 3.9101 10,742 −1

10 4.9551 4.9213 7,976 −1
11 4.3258 4.5169 8,505 +1
12 1.5730 5.9326 287 −1
13 1.1798 4.7865 1,240 +1
14 1.6517 4.3820 1,655 −1
15 0.8652 3.5730 60 +1
16 2.7528 1.4157 10 +1
17 2.0449 1.7528 172 −1
18 0.0787 0.8090 92 −1
19 0.6292 1.8202 193 +1

Coordinates of support vectors, Lagrange multipliers, and class (−1 or 1).

6.1.2. Study of SVM with respect to number of training points
A study of the evolution of SVM is done with respect to

the number of training samples in the design of experiments
as described in Section 4.1. For a two-dimensional problem,
the number of convergence points nconv is chosen as 800.
Note that only the SVM is evaluated at these points and not
the actual response. The difference between successive limit
state functions decreases gradually and the separating function
calculated by SVM becomes steady around 90 training points
as can be seen in Fig. 9.

Fig. 9. Two-dimensional problem: variation of SVM with respect to the
variation of number of training samples.

6.1.3. Variation of the limit state function with respect to kernel
parameters

As mentioned in Section 4.2, the limit state function is
also contingent upon the value of the width parameter σ of
the Gaussian kernel. For a range of width parameter value
from 0.5 to 5.0, the classification error was studied for 80 and
90 training samples (Fig. 10). 800 test points were used to
quantify the error. Since the function is analytical, the number
of samples can be quite high. From the numerical experiments it
is observed that the classification error with σ between 2.0 and
3.0 is quite low for the problem at hand. Note that this result
would be different had the variables been scaled.

Fig. 10. Error in estimation of limit state function with respect to the width
parameter σ of the Gaussian kernel.

6.2. Arch structure with discontinuous response. Construction
of the limit state function

The design space decomposition using SVM is applied to
an arch structure (see Fig. 11) subjected to a point load at
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the center. The arch is a typical example of a geometrically
nonlinear structure exhibiting a snap-through behavior once
the limit load is reached. The design space decomposition will
enable the explicit separation of the regions of the design space
corresponding to buckling (i.e., failure) and non-buckling.

Fig. 11. Arch geometry and loading. Snap-through behavior.

The design variables are the thickness t and the width w of
the arch, and are considered as random variables. In addition,
the load is also a random parameter. The arch has a radius of
curvature R of 8 m and it subtends an angle θ of 14 degrees at
its center of curvature. It is modeled using shell elements and
the arch is hinged at the supports. Due to the symmetries of the
problem, only one fourth of the arch needed to be modeled. The
range of values allowed for the design parameters are tabulated
in Table 2.

Table 2
Range of design parameters for arch problem

Thickness (t) (mm) Width (w) (mm) Force (F) (N)

Min value 3 150 2000
Max value 10 500 8000

A design of experiments is generated by IHS using 150
training samples with respect to the thickness, the width and the
force. The variables are normalized by dividing the values by
their respective maximum values. Note that the sampling does
not yet take into account the specific probabilistic distributions,
and the variables are assumed uniformly distributed. This is
done in order to have as much information as possible over the
whole design space to build the explicit limit state function and
the response surfaces for optimization.

The studied response is the displacement of the central
node which is solved for at each training sample using the
finite element software ANSYS. This response is clearly
discontinuous when a limit load is reached as the arch exhibits
snap-through. The discontinuous variation of the displacement
with respect to the thickness and width is depicted in Fig. 12
for a fixed value of the applied load.

Discontinuities are used efficiently as they allow one to
segregate the responses into clusters. This is done by a
clustering technique such as K-means. By specifying the search
for two clusters, it is then possible to sort the responses between
failure (buckling) and non-failure, and classify the samples in
the design space into “+1” and “−1” classes. This information
is input to the SVM algorithm, which then separates the regions
Fig. 12. Discontinuous response of arch problem. The response has been
obtained for a constant load F = 6400 N.

of distinct behavior by an explicit limit state function. In this
problem, a Gaussian kernel with parameter σ equal to 2.2 is
used to determine the separating SVM hypersurface (Fig. 13).
The misclassification cost C is set to infinity. The support
vectors and the corresponding Lagrange multipliers are given
in Table 3.

Fig. 13. Arch problem: Identification of the failure domain (design space
decomposition) using SVM.

The sensitivity of SVM with respect to the number of
training samples is shown in Fig. 14. The change between
two successive limit state functions constructed with different
number of training samples is quantified as described in
Section 4.2 with 1600 convergence points. The limit state
function stabilizes at around 150 training samples.

6.3. Arch structure — Reliability-based design optimization

Once the explicit SVM limit state function is obtained,
design parameters of the arch are optimized while considering
the uncertainties in the geometrical parameters and the force.
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Table 3
Support vector data

Support Vector Thickness Width Force Lagrange multipliers Class y

1 0.7228 0.3940 0.6728 87,846 +1
2 0.5537 0.9577 0.7634 2,114 +1
3 0.5866 0.3141 0.2903 7,671 +1
4 0.7698 0.4785 0.9245 32,532 −1
5 0.6523 0.4034 0.4765 88,174 −1
6 0.6195 0.8168 0.8993 3,705 +1
7 0.5349 0.4550 0.3054 19,370 +1

Normalized coordinates of support vectors, Lagrange multipliers, and class (−1 or 1). b = 8.0473.
Fig. 14. Arch problem: variation of SVM with respect to the variation of
number of training samples.

The objective is to minimize the volume of the arch structure
while preventing global bucking with a probability less than
10−3. The thickness t and the width w of the arch are the two
random design variables, while the load is an external random
parameter having a mean value of 6400 N. All three random
variables have truncated normal distributions. The means of
the design variables t̄ and w̄ are the optimization variables.
Table 4 provides the distribution parameters for the random
variables.

The optimization problem is:

min
t̄,w̄

Volume(t̄, w̄)

s.t. P(buckling) ≤ 10−3

3.0 ≤ t̄ ≤ 10.0
150.0 ≤ w̄ ≤ 500.0

(20)

As described in Section 5.2, the probabilistic constraint is
handled by using the SVM explicit limit state function and by
fitting the reliability index with a response surface.

To calculate the probability of failure, a Monte Carlo
simulation with 106 samples is run for every point of the initial
design of experiments. The probability of failure calculated as
the fraction of Monte Carlo samples lying in the failure domain,
is then transformed using Eq. (15). We recall here that the use of
brute Monte Carlo simulation is made possible as the evaluation
of each sample consist of checking the sign of an analytical
function.
Table 4
Arch problem: Distribution of random variables

Mean Std. dev. Lower limit Upper limit

Thickness t̄ (optimized) 0.2 mm t̄ − 1 mm t̄ + 1 mm
Width w̄ (optimized) 5 mm w̄ − 25 mm w̄ + 25 mm
Force 6400 N 640 N 4800 N 8000 N

Values of the reliability index calculated for the 150 training
points are then fitted with SVM used for regression. The use of
SVM for regression has the advantage of being able to fit highly
multimodal functions and avoid over fitting. The kernel used
is again Gaussian, with parameter σ = 2.2. Regression fitting
of the reliability index β is shown in Fig. 15. However, before
fitting the β values, points for which P f = 0 or P f = 1 are
removed as the corresponding indices go to infinity. This does
not affect the accuracy of the probabilistic constraint. There is
enough information in the range around the target probability
that is critical for estimating the probabilistic constraint.

Fig. 15. SVM regression fitting of β values.

The maximum global goodness of fit and local error values
for the approximation are:

R2
= 0.9986

RMAE = 0.1075

The optimization problem consists of a simple analytical
function and a response surface. It can therefore be solved
efficiently with a gradient-based method such as the sequential
quadratic programming method (SQP). Fig. 16 shows the
objective function, constraints and the optimum design point.
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The optimum results are gathered in Table 5. For comparison,
the actual probability of failure at the found optimum is also
given.

Table 5
Summary of the RBDO results for the arch

Normalized optimum thickness 0.9136
Normalized optimum width 0.3
Optimum thickness 9.136 mm
Optimum width 150 mm
Calculated optimum probability of buckling 0.001
Actual optimum probability of buckling 8.64 × 10−4

Objective function value 2.6788 × 106mm3

Fig. 16. Arch problem: Objective function, constraint functions, and optimum.

7. Concluding remarks

7.1. Summary

The proposed approach enables the construction of explicit
limit state functions using SVM. The technique is particularly
useful for problems exhibiting discontinuous responses
and disjoint failure domains. Two problems with disjoint
failure regions and discontinuous responses are presented to
demonstrate the efficiency of the method for the explicit
construction of limit state functions and for RBDO.

7.2. Limitations and future improvements

The proposed SVM-based methodology successfully meets
the challenges of handling discontinuous responses and disjoint
failure regions in reliability assessment or optimization.
However, there are still certain areas where improvements can
be made.

7.2.1. Reduction of the number of training points
The number of DOE points required to train the SVM

increases with the problem dimensionality. The developed
method needs to be improved further to reduce the number
of training sample points required for constructing an accurate
explicit limit state function. A method for adaptive update of the
SVM limit state function is being developed for this purpose.
This will reduce the number of training points required,
and also limit the increase in the number of points with
dimensionality. Thus, extension of the method to problems with
larger dimensions will be made efficient. Further, the scheme
for adaptive update of DOE will automatically detect when a
sufficient number of training points has been selected.

7.2.2. Accuracy of the probability of failure estimates
The sensitivity of the probability of failure estimates with

respect to the number of training points has not been studied
here. However, it should be noted that there might be some
uncertainty with the probabilistic distribution used, which
might have even more influence on the RBDO result than
the accuracy of the limit state function. The final accuracy of
the SVM limit state function will be increased by using the
adaptive update scheme being developed. Even for small target
failure probabilities, the probabilities of failure calculated with
the final limit state function will be very accurate, and almost
insensitive to further increase in the training set size. However,
the accuracy of the probability estimates also depends on the
number of Monte Carlo samples. In the future, it is envisioned
to use importance sampling in order to decrease the number of
Monte Carlo samples and reach smaller probabilities of failure.
A method of direct calculation of the probability of failure,
using the explicit expression of the SVM limit state function,
is also being studied.

Appendix A. K-means clustering

The K-means method [18] is a non-hierarchical approach
to identify clusters in data sets. The algorithm partitions N
data points into K clusters S j containing n j points, so as to
minimize the variance of the data within each cluster. The
function to minimize is

J =

K∑
j=1

∑
n∈S j

‖xn − µ j‖
2 (21)

where xn is a vector representing the nth data point and µ j is
the geometrical mean of the data in S j .

The algorithm starts by randomly partitioning the data into
K initial sets. It then calculates the centroid of each set and
rearranges the data points by assigning each one to its nearest
centroid. This process is continued until convergence.

One of the limitations of the K-means algorithm, used in this
paper, is that the number of clusters is given a priori. Techniques
such as hierarchical clustering might help to avoid this difficulty
as it investigates a set of data simultaneously over a variety of
scales of distance and let the investigator decide which is the
most appropriate to choose.
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