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This article presents a methodology to generate explicit decision functions using support vector machines
(SVM). A decision function is defined as the boundary between two regions of a design space (e.g., an
optimization constraint or a limit-state function in reliability). The SVM-based decision function, which
is initially constructed based on a design of experiments, depends on the amount and quality of the train-
ing data used. For this reason, an adaptive sampling scheme that updates the decision function is pro-
posed. An accurate approximated explicit decision functions is obtained with a reduced number of
function evaluations. Three problems are presented to demonstrate the efficiency of the update scheme
to explicitly reconstruct known analytical decision functions. The chosen functions are the boundaries of
disjoint regions of the design space. A convergence criterion and error measure are proposed. The scheme
is also applied to the definition of an explicit failure region boundary in the case of the buckling of a geo-
metrically nonlinear arch.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The simulation-based design of complex engineering applica-
tions is often associated with high computational costs, thus mak-
ing design optimization and reliability assessment tedious. In order
to reduce the computational burden, actual models are often re-
placed by surrogates such as response surfaces or metamodels
[1]. These approximations are embedded within an optimization
loop or are used to efficiently run Monte-Carlo simulations (MCS)
[2]. Surrogates are typically built using the values of the system’s
responses for selected design configurations defined by a design
of experiments (DOE) [3]. However, the accuracy of the approxima-
tion greatly depends on the amount and quality of training data
used. It is well known that the filling of the design space with sam-
ples is limited to a few dimensions because of the so-called ‘‘curse
of dimensionality”: the number of samples needed increases expo-
nentially with the problem dimensionality.

In the literature, some approaches have been proposed to re-
duce the number of samples by selectively choosing them. In [4],
a reliability assessment method was proposed whereby additional
points were generated in the vicinity of an implicitly defined limit-
state function. For this purpose, a sampling guidance function was
defined based on the difference between the value of the perfor-
mance function at a point (approximated by a metamodel) and
ll rights reserved.

: +1 520 621 8191.
issoum).
the allowable performance value. A set of new samples with high
guidance function values were selected from a uniform grid.
Among these, the point having the maximum probability of failure
was chosen as the new training sample. Another approach used an
expected improvement function (EIF) to select the location for new
training samples [5,6] in order to update and refine a Kriging re-
sponse approximation.

This article introduces a new adaptive sampling scheme which
reduces the number of function evaluations. However, instead of
approximating responses and using implicitly defined optimiza-
tion constraints or limit-state functions, the proposed approach
constructs explicit approximation of these boundaries with respect
to the design variables [7]. That is, the design space is explicitly
decomposed into feasible and infeasible regions (or failure and safe
regions if reliability is considered). For the sake of clarity, we will
refer to constraints and limit-state functions as decision functions
for the remainder of this article.

The approach, which does not approximate responses, has the
advantage of avoiding the difficulties due to discontinuous re-
sponses often encountered in nonlinear problems. In simulation-
based design, discontinuities present a serious problem for optimi-
zation or probabilistic techniques because system responses are
usually assumed continuous. In optimization, this restricts any tra-
ditional gradient-based method or response surface technique.
Discontinuities can be detected by data mining techniques such
as clustering [8], which automatically identifies groups of similar
responses. It is then possible to map these clusters to specific re-
gions of the design space.
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Fig. 1. Linear decision function separating class +1 (red squares) from class �1
(blue triangles). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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When considering reliability, discontinuities might also hamper
the use of approximation methods such as first and second order
reliability methods (FORM and SORM) [9], advanced mean value
(AMV) [10], or Monte-Carlo simulations with response surfaces.
In addition to discontinuities, nonlinear problems are character-
ized by disjoint failure regions, thus further limiting the use of clas-
sical approaches to assess probabilities of failure. These disjoint
regions are often associated with distinct system behaviors, a phe-
nomenon that is found in structural impact problems (e.g., vehicle
crash) [11]. However, by explicitly defining the boundaries of the
possibly disjoint failure domain, the calculation of failure probabil-
ities through Monte-Carlo simulations is made efficient, as the ver-
ification of the state of a sample (failed or safe) is straightforward
and computationally efficient.

Several attempts have been made to explicitly decompose the
design space in the case of nonlinear transient dynamic problems.
Hyperplanes and ellipsoids, defined explicitly with respect to de-
sign variables, were first used in the case of a tube impacting a ri-
gid wall [12]. These decision functions split the design space into
two regions corresponding to crushing and global buckling behav-
iors. The decision functions were then used to optimize the tube so
as to avoid buckling while taking uncertainties into account. The
boundaries of the failure region (global buckling) were later de-
fined with a convex hull which led to a more accurate and less con-
servative failure domain [13].

However, the tools used to create decision functions were not
satisfactory as they were limited to a single convex set, and there-
fore did not address the issue of non-convex disjoint failure do-
mains. The approach was generalized by constructing the
boundaries of specific regions of the design space using support
vector machines (SVM) [14–16]. SVM is a powerful classification
tool that enables the construction of linear or nonlinear optimal
decision functions between classes in a multi-dimensional space.
The decision functions can be non-convex and form several disjoint
subsets.

The explicit design space decomposition is made possible by
first studying the responses with a DOE. In order to distribute
the samples uniformly over the design space, techniques such as
improved distributed hypercube sampling (IHS) [17] or Latin-
ized centroidal Voronoi tesselation (LCVT) [18] can be used. The
responses, obtained for each DOE sample, are then categorized into
‘‘acceptable” or not (e.g., safe or failed). This classification enables
the use of SVM to construct explicit decision functions.

However, the number of training samples needed for the con-
struction of an accurate decision function depends on the complex-
ity of the function and the number of dimensions of the problem.
In general, it is difficult to predict the required training set size. Un-
less a very large DOE is generated, which is not practical for most
problems, the first decision function might not be accurate and
needs to be updated.

In this paper, an algorithm to update the initial decision func-
tion starting from a small training set size is described. It is an
adaptive sampling strategy based on the selection of points that
lie on the SVM decision function [19]. It can be shown that such
samples are bound to modify the decision function and therefore
constitute a natural element of the update approach. These sam-
ples are efficiently found by a global optimization technique such
as a genetic algorithm (GA). A stopping criterion is proposed which
dictates the number of training samples used to construct the deci-
sion function. The approach is applied to the reconstruction of
three analytical problems with two, three and four variables. These
test decision functions form the boundaries of non-convex and dis-
joint failure regions. An error metric is introduced to quantify the
error between the approximated decision function and the actual
analytical function. In addition, the accuracy of the updated deci-
sion function is compared to that of a function trained with an
LCVT distribution using the same number of samples. In addition
to the analytical functions, the methodology is applied to an arch
structure with three random parameters. Due to buckling, the re-
sponse (largest displacement) is discontinuous. These discontinu-
ities are identified using a clustering technique which provides
the basic classification for the construction of the SVM decision
function.

2. Support vector machines

SVM is a machine learning technique that is becoming increas-
ingly popular and has widespread applications in classification and
pattern recognition [14,15]. A variation of SVM is used as a regres-
sion tool and is referred to as support vector regression (SVR) [20].
The main feature of SVM lies in its ability to define complex deci-
sion functions that optimally separate two classes of data samples.
The purpose of this section is to provide the reader with an over-
view of the SVM algorithm.

Consider a set of N training samples xi in a d-dimensional space.
Each sample is associated with one of two classes characterized by
a value yi = ±1. The SVM algorithm finds the boundary (decision
function) that optimally separates the training data into the two
classes. The basic SVM theory is presented through a detailed
explanation in the case of a linearly separable data set. It is then
extended to the case where the data is not linearly separable.

2.1. Linear decision function

In the SVM theory, the linear decision function lies half way be-
tween two hyperplanes that separate the two classes of data. This
pair of hyperplanes, referred to as ‘‘support hyperplanes”, is re-
quired to pass at least through one of the training samples of each
class (support vectors) while no sample can be found within the
margin (Fig. 1). For separable data, there are an infinity of possible
decision functions. In order to find the ‘‘optimal” decision function,
the basic idea is to maximize the ‘‘margin” that separates the sup-
port hyperplanes. One of the support hyperplanes consists of those
points that satisfy:

w � xþ b ¼ þ1 ð1Þ
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Fig. 2. Two-dimensional Gaussian kernel separating the two classes shown by blue
triangles and red squares. The zero value iso-contour represents the optimal deci-
sion function and the support vectors are shown with circles. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The other hyperplane contains the points that follow:

w � xþ b ¼ �1 ð2Þ

where x is the position vector of a point in space, w is the vector of
hyperplane coefficients and b is the bias. All the points of the class
y = +1 lead to a positive value of SVM and all the points in the class
y = �1 are ‘‘negative”. Eqs. (1) and (2), and the constraint that no
sample can lie between the two aforementioned hyperplanes, can
be combined in a single global constraint defined as follows:

yiðw � xþ bÞ � 1 P 0 ð3Þ

The perpendicular distance between the two support hyperplanes is
2
kwk. Therefore, determining the support hyperplanes (i.e., solving for
w and b) reduces to the following optimization problem

min
w;b

1
2
kwk2

yiðw � xi þ bÞ � 1 P 0 1 6 i 6 N
ð4Þ

This is a quadratic programming (QP) problem since the objective
function is quadratic, and the constraints are linear. Problem (4) is
convex and can be solved efficiently with available optimization
packages. As a result, the optimal w, b, and the Lagrange multipliers
ki at the optimum are obtained. From this, the classification of any
test point x is obtained by the sign of the following function:

s ¼ bþ
XN

i¼1

ki yi xi � x ð5Þ

Note that, following the Kuhn and Tucker conditions, only the La-
grange multipliers associated with the support vectors will be
strictly positive while the other ones will be equal to zero. In gen-
eral, the number of support vectors is a small fraction of the total
number of training samples. Eq. (5) can be rewritten with respect
to the number of support vectors NSV:

s ¼ bþ
XNSV

i¼1

ki yi xi � x ð6Þ

In the case where the data is not linearly separable, the optimiza-
tion problem (4) will be infeasible. The inequality constraints are
then relaxed by the introduction of non-negative slack variables ni

which are minimized through a penalized objective function. The
relaxed optimization problem is

min
w;b;n

1
2
kwk2 þ C

XN

i¼1

ni

yiðw � xi þ bÞ � 1 P �ni 1 6 i 6 N

ð7Þ

The coefficient C is referred to as the misclassification cost. In the
dual formulation of Problem (7), C becomes the upper bound for
all the Lagrange multipliers.

2.2. Nonlinear decision function

SVM can be extended to the case of nonlinear decision functions
by projecting the original set of variables to a higher dimensional
space referred to as the feature space. In this n dimensional feature
space, the new components of a point x are given by (/1(x),
/2(x), . . .,/n(x)) where /i are the features. The remarkable feature
of SVM is that the nonlinear decision function is obtained by for-
mulating the linear classification problem in the feature space.
The classification is then obtained by the sign of

s ¼ bþ
XNSV

i¼1

kiyi < UðxiÞ;UðxÞ > ð8Þ

where U = (/1(x), /2(x), . . .,/n(x)) and <,> is the inner product.
The inner product in Eq. (8) forms a kernel K, so that the deci-
sion function is written:

s ¼ bþ
XNSV

i¼1

ki yi Kðxi;xÞ ð9Þ
2.3. Types of kernels

The two most commonly used kernels functions are the polyno-
mial and the Gaussian kernels. Some other kernels that may be
used are multi-layer perceptions, Fourier series, and splines [21].
The Gaussian kernel used in this paper is defined as

Kðxi;xÞ ¼ exp �kxi � xk2

2r2

 !
ð10Þ

where r is the width factor of the Gaussian kernel. An example of
classification using a Gaussian kernel is provided in Fig. 2.

2.4. General features of SVM

SVM has several features which make it a very powerful tool for
pattern recognition and classification. These features are a also
useful in probabilistic design and optimization. Some features of
SVM are:

1. SVM is multi-dimensional: SVM is capable of classifying data in
a multi-dimensional space. In Fig. 3 a Gaussian kernel in three
dimensions is used to optimally define the boundary between
class +1 (red squares) and class �1 (blue triangles).

2. Optimal decomposition: There can be several ways to separate
two classes of data. However, SVM decomposes the design
space by an optimal separating function which maximizes the
margin between the classes.

3. Separation of disjoint regions: SVM is capable of identifying dis-
joint regions. Hence, it can be applied to problems for which the
decision function forms the boundaries of several disjoint
regions in the design space.



Fig. 3. Three-dimensional Gaussian kernel separating the two classes shown by
blue triangles and red squares. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3. Methodology for the identification of explicit decision
functions

The methodology used for the identification of explicit bound-
aries with SVM is presented in this section. The first attempt to
use SVM for design space decomposition was presented in [16].
The focus of the paper was the use of explicit design space decom-
position to handle the probabilistic design of problems with dis-
continuities. However, the number of training samples required
for an accurate estimate of the decision function was quite large.
Further, there was no specific criterion to decide the number of
training samples that are needed, as it depends on the specific
problem at hand.

In order to address these issues, an update scheme was derived.
The problem of using training samples in the most efficient way
can be seen as an approach to update the decision function as well
as a way to improve the DOE for a specific problem. To achieve this
objective, this article proposes an active learning sample selection
technique that iteratively uses the information from the previously
constructed SVM decision function.

The first step consists of performing an initial DOE [22] to sam-
ple the design space. The responses of the system for the DOE sam-
ples are then evaluated and classified into distinct classes that
correspond to feasible or infeasible system behaviors. These classi-
fied design configurations are then used as training samples for the
SVM algorithm. For practical purposes, the initial DOE size is typi-
cally maintained rather small, and therefore, the initial prediction
of the decision function may be inaccurate. The update algorithm
is then used to refine it. The three major steps of the approach
are described in the sequel and summarized in Fig. 4.

3.1. Design of experiments – LCVT

There exist several DOE techniques such as Latin hypercube
sampling (LHS) [23], D-optimal sampling [3], improved and opti-
mum Latin hypercube sampling (IHS and OLHS) [17,24]. In our ap-
proach, the initial training sample set is generated using LCVT [18].
LCVT is chosen for the training sample distribution because it tends
to provide a uniform distribution of information within the design
space while retaining the characteristics of a Latin hypercube.
Fig. 5 provides examples of both LCVT sampling and LHS. The sam-
pling obtained using LCVT is seen to be more uniformly distrib-
uted, although it has slightly higher discrepancy.

3.2. Estimation and classification of responses

After generating the LCVT DOE, response values at these sample
points are evaluated and classified. In the general case, these re-
sponses might be obtained by a simulation code. They are then
classified by comparing them to a ‘‘threshold” value or by the
use of clustering. The threshold value is the traditional allowable
response value used to define feasibility in optimization or failure
in reliability. However, in the case of discontinuous responses, such
a threshold might not be known a priori and cluster identification
techniques such as K-means [25] or Hierarchical clustering [8,26]
are needed. The classification of responses into two distinct classes
(e.g., safe or failed) provides the information needed by the SVM
algorithm to generate the decision function. Fig. 6 shows two cases
in which the samples are classified using a threshold value and
clustering.

3.3. Definition of an explicit decision function – update algorithm

Following the selection of training samples with a DOE, and the
classification of response values, SVM is used to generate an expli-
cit decision function. The construction of the initial approximated
decision function is then followed by the update. The basic idea
is to choose a new sample point that is likely to modify the pre-
dicted decision function when added to the training set. The fol-
lowing two criteria help to achieve that objective:

� A new training sample is selected such that it has the highest
probability of being misclassified by the SVM decision function.
Such points are clearly located on the decision function itself
(i.e., SVM = 0). In addition, the new training sample selected on
the decision function lies within the SVM margin which, by con-
struction, does not include any sample. Therefore, the decision
function is bound to be modified.

� A new training sample should not be near existing sample points
in order to avoid redundant information and useless function
evaluations. For this, a minimum distance between samples is
enforced as a function of the hypervolume of the design space,
the problem dimensionality, and the number of training
samples.

The update algorithm is based on the following steps:

Step 1: Choice of training samples on the decision function – In the
first step of the algorithm, a new training sample is
selected according to the two aforementioned criteria.
The corresponding problem is:
min
x

bþ
XNSV

i¼1

kiyiKðxi;xÞ
�����

�����
lx P a

V
N

� �1
d

ð11Þ

where lx is the distance of a point from the nearest existing
training sample, and the right hand side of the inequality
represents the minimum allowable distance. V is the hyper-
volume of the d-dimensional space and 0 < a 6 1. This
search is a global optimization problem that is solved by
a genetic algorithm (GA). Fig. 7 shows the effect of adding
a new training sample on the decision function. After the
new sample is selected, the SVM decision function is
updated.



Fig. 4. Explicit identification of boundaries with the application of the update algorithm.
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Step 2: Sample on decision function at maximum distance from the
previously added point – The possibility of new training
samples being chosen in a localized region of the design
space needs to be avoided. In step 2, a GA is used to find
a point farthest from the previously added training sam-
ple, while following the two aforementioned criteria
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(Eq. (12)). After adding this new point to the training set,
the SVM decision function is updated. This is illustrated in
Fig. 8.The optimization problem, solved with a GA, is:
Fig. 9. Ad
function.
max
x
kx� xprevk

lx P c
V
N

� �1=d

bþ
XNSV

i¼1

kiyiKðxi;xÞ
�����

����� ¼ 0

ð12Þ

where xprev is the previously added training sample, and c
is a coefficient less than 1.
Step 3: Sample on decision function with maximum minimum dis-
tance from existing training samples – In step 3, a GA is
used to find a point on the decision function, which does
not have any existing training sample in its neighborhood.
For this purpose, the distance to the nearest existing
training sample is maximized (Eq. (13)). The new point
is included in the training set and the SVM decision func-
tion is reconstructed (Fig. 9).The optimization problem is
d
T

max
x
kx� xnearestk

bþ
XNSV

i¼1

kiyiKðxi;xÞ
�����

����� ¼ 0
ð13Þ

where xnearest is the nearest training sample from the cur-
rent GA point being evaluated.The three steps in the up-
date section are repeated until the stopping criterion is
met.
3.3.1. Stopping criterion
In order to terminate the update algorithm, a stopping criterion

is required. Because the actual explicit decision function is not
known in general, the criterion is based on the variations of the
approximated decision function. For this, a set of Nconv ‘‘conver-
gence points” is generated using an LHS DOE. The fraction of con-
vergence points for which there is a change of sign between two
successive iterations is calculated. The number Nconv can be chosen
to be quite high because the calculation of SVM values using Eq. (9)
is inexpensive. For a d-dimensional space, Nconv is chosen as
100 � 5d. Since the convergence points are generated using LHS,
the generation of these samples is efficient. By choosing a large
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set of convergence points, an accurate estimate of the fraction
can be achieved (Eq. (14)).

Dk ¼
num jsignðsi

k�1Þ � signðsi
kÞj > 0

� �
Nconv

ð14Þ

where Dk is the fraction of convergence points for which the sign of
the SVM evaluation changes between iterations k � 1 and k. si

k�1 and
si

k represent the SVM value of the ith convergence point at iterations
k � 1 and k respectively. Change in the SVM decision function is
very significant during early stages of the update and reduces grad-
ually, as the quality of the approximation increases.

In order to implement a practical stopping criterion, the fraction
of convergence points changing sign between successive iterations
is fitted by an exponential curvebDk ¼ AeBk ð15Þ

where bDk represents the fitted values of Dk. A and B are the param-
eters of the exponential curve.

The value of bDk at the last iteration kc is checked after each
training sample is added. The slope of the curve is also calculated.
For the update to stop, the value of the fitted curve should be less
than a small positive number �1. Simultaneously, the absolute va-
lue of the slope of the curve at convergence should be lower than
�2.

AeBkc < �1

� �2 < BAeBkc < 0
ð16Þ
3.4. Error measure

The accuracy of the SVM decision function is judged by its fidel-
ity to the actual decision function. In practical problems, an error
metric is difficult or impossible to obtain. However, in the case of
academic analytical test functions, an error measure can be ob-
tained. For this purpose, a dense grid of Ntest ‘‘test” points is gener-
ated over the whole space. The values of both the actual decision
function and the SVM are calculated for each test point. Since the
actual decision function is analytical, these function evaluations
are efficiently performed. The number of test points being much
larger than the number of sample points, the error can be assessed
by calculating the fraction of misclassified test points. A test point
for which the sign of SVM does not match the sign provided by the
actual function is considered misclassified. That is, the error � is
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Table 1
Two-dimensional problem. Effect of the initial LCVT training set size. The errors are
noted for SVM decision functions constructed using the update scheme and by using a
static LCVT distribution with the same number of samples.

Ninitial �initial Ntotal �final �LCVT

10 0.1366 61 0.0171 0.0562
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� ¼
num bþ

PNSV

i¼1
kiyiKðxi;xtestÞ

� �
ytest 6 0

� �
Ntest

ð17Þ

where xtest and ytest represent a test sample and the corresponding
class value (±1) for the actual (known) decision function.
20 0.0874 75 0.0158 0.0490
40 0.0919 84 0.0206 0.0448
4. Examples

Four test examples demonstrating the efficiency of the update
methodology are used. Three of the problems consist of analytical
decision functions representing non-convex and disjoint failure
domains. Analytical functions allow one to verify if the proposed
SVM update scheme has the ability to reproduce the decision func-
tions. Problems with two, three, and four variables are studied.
Also, the update scheme is applied to construct the explicit deci-
sion function in case of an arch structure having discontinuous
response.

In all the problems, a Gaussian kernel with a width factor r
equal to 2.2 is used and the misclassification coefficient C is set
to infinity to avoid misclassification. The value of r depends on
the ranges of the variables xi and the complexity of the decision
function. In the general case, an appropriate value of r can be
determined by minimizing the number of support vectors. The
coefficients a and c are equal to 0.2 and 0.5 respectively.

The following notation will be used in the result section:

� Ninitial is the initial training set size.
� Ntotal is the total number of samples required at the end of the

update.
� �initial and �final are the errors associated with the initial and final

SVM decision functions respectively.
� �LCVT is the error associated with a decision function constructed

with an LCVT sample distribution of Ntotal points.

The analytical decision functions are written in the form
f(xk) = 0, where xk are the variables. In order to perform the SVM
classification, the samples corresponding to f(xk) > 0 and f(xk) < 0
are labeled +1 and �1 respectively.

To better analyze the problems, studies have also been per-
formed with respect to the initial training set size and the stopping
criterion. In most cases, the stopping condition on �1 is the govern-
ing condition. Therefore, the study with respect to the stopping cri-
terion is performed by varying �1 while the value of �2 is 5.0 � 10�4.

4.1. Two-dimensional non-convex example with disjoint regions

For this problem, the decision function is defined by an analyt-
ical function of two variables x1 and x2.

f ðx1; x2Þ ¼ x2 � j tanð0:5x1 þ 2Þj � 3 ð18Þ

The variables x1 and x2 are continuous and both belong to the inter-
val [0,10]. As depicted in Fig. 11, the function, in dotted line, forms
two disjoint regions.

4.1.1. Construction of the decision function
The initial decision function is constructed with 20 training

samples generated using LCVT. The number of convergence points
Nconv is 2500. The values of �1 and �2 for the stopping criterion are
4.0 � 10�3 and 5.0 � 10�4 respectively. For measuring the error,
the fraction of misclassified test points is calculated as described
in Section 3.4. The number of test points for the error measurement
is Ntest = 10,000.

The results are gathered in Table 1. The error in predicting the
initial decision function using LCVT distribution is 8.74%, which re-
duces to 1.58% after the update. The total number of training sam-
ples needed is 75. In comparison, the decision function constructed
with the same number of training samples generated by LCVT gives
an error of 4.90%. Fig. 10 depicts the SVM decision function, in solid
line, with initial and final training sets. For completeness, two
other intermediate SVM decision functions, constructed with 40
and 60 training samples, are also shown. A decision function ob-
tained by using a 75 initial LCVT samples is also shown in Fig. 11.

The convergence of the update algorithm is shown in Fig. 12.
The fraction of convergence points changing sign between succes-
sive iterations is plotted versus the iteration number. The blue
curve consists of the actual values, while the smooth red curve is
the fitted exponential curve.

4.1.2. Study of the influence of initial training sample set
The effect of variation of the initial training sample size is stud-

ied and documented in Table 1. Selecting a very small initial train-
ing set can lead to loss of information in certain regions of the
design space. On the contrary, selecting a very large initial set re-
duces this possibility, but might lead to prohibitive computational
times. From Table 1, it is noted that in general the accuracy
achieved by the update algorithm is higher compared to an LCVT
DOE with the same number of samples.

4.1.3. Study of the influence of stopping criterion
The effect of varying �1 on the total number of samples is tabu-

lated in Table 2.

4.2. Three-dimensional example with disjoint regions

The decision function for this problem is defined by an analyt-
ical function of three variables x1, x2 and x3.

f ðx1; x2; x3Þ ¼
1
4
ðsinðx1 � 3Þðx2 � 1Þ þ ðx3 � 1Þ2Þ � 1 ð19Þ

The variables x1, x2, and x3 belong to the ranges [0,10], [6,16] and
[0,10] respectively.

4.2.1. Construction of the decision function
40 training samples generated using LCVT are used for con-

structing the initial SVM decision function. The number of conver-
gence points Nconv for the stopping criterion is 12,500 and the
values of �1 and �2 are 1.0 � 10�3 and 5.0 � 10�4 respectively. The
number of test points for the error measure is Ntest = 64,000.

The results are gathered in Table 3. The error for the initial SVM
decision function is 14.52%, which is reduced to 2.54% after the up-
date. The total number of training samples needed is 191. In com-
parison, the error associated with a decision function constructed
with 191 LCVT samples is 5.38%. The decision function obtained
by SVM before and after the update, starting with 40 samples,
are shown in Fig. 13. The decision function obtained by using a
191 point LCVT distribution is also shown in Fig. 14. The SVM deci-
sion function and the actual expected function are shown by the
light grey and the deep blue surfaces respectively.

Convergence of the update algorithm is shown in Fig. 15. The
y-axis represents the fraction of convergence points changing
sign between successive iterations and the x-axis represents the
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Fig. 10. Two-dimensional problem. Explicit design space decomposition at several stages of the algorithm starting with 20 samples (top left). The final training set size is 75
(bottom right). The SVM and actual decision functions are shown by solid and dotted curves respectively.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

0

Fig. 11. Two-dimensional problem. Explicit design space decomposition with SVM
using 75 LCVT samples. The dotted and solid curves represent the actual and SVM
decision functions.
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Fig. 12. Two-dimensional problem. Convergence of the update algorithm.
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Table 2
Two-dimensional problem. Effect of the value of �1 for stopping criterion.

�1 Ntotal �final �LCVT

4.0 � 10�3 75 0.0158 0.0490
3.0 � 10�3 76 0.0210 0.0398
2.0 � 10�3 84 0.0153 0.0448
1.0 � 10�3 117 0.0066 0.0272

Table 3
Three-dimensional problem. Effect of the initial LCVT training set size. The errors are
noted for the update scheme and a static LCVT distribution with the same number of
samples.

Ninitial �initial Ntotal �final �LCVT

20 0.1775 174 0.0278 0.0584
40 0.1452 191 0.0254 0.0538
80 0.0765 230 0.0158 0.0394

Fig. 14. Three-dimensional problem. SVM decision function generated using 191
LCVT samples. The deep blue surface is the actual decision function and the light
grey one is generated by SVM. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Three-dimensional problem. Convergence of the update algorithm.
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iteration number. The value of the fitted curve is less than
1.0 � 10�3 at the last iteration.

4.2.2. Study of the influence of initial training sample set
The effect of the variation of initial training set size is studied.

The results are given in Table 3. Similar to the two-dimensional
problem, it is noted that in general the accuracy achieved by the
update algorithm is higher compared to that obtained by a static
LCVT DOE of same size.

4.2.3. Study of the influence of stopping criterion
In this section, the number of required samples as a function of

�1 is studied (Table 4).

4.3. Four-dimensional example

For this problem, the decision function is defined by an analyt-
ical function of four variables x1, x2, x3 and x4.

f ðx1; x2; x3; x4Þ ¼
1
4
ðsinðx1 � 3Þðx2 � 1Þ2 þ ðx3 � 1Þx4Þ � 3 ð20Þ

The variables x1, x2, x3 and x4 all have range [0,10].

4.3.1. Construction of the decision function
The initial SVM decision function is constructed using 80 train-

ing samples generated using LCVT. The number of convergence
Fig. 13. Three-dimensional problem. The deep blue and light grey surfaces are the actual and SVM decision functions respectively. The left figure shows the initial SVM
decision function constructed with 40 LCVT samples while the figure on the right shows the final updated SVM decision function constructed with 191 samples. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Table 4
Three-dimensional problem. Effect of the value of �1 for stopping criterion.

�1 Ntotal �final �LCVT

4.0 � 10�3 125 0.0393 0.0651
3.0 � 10�3 120 0.0388 0.0647
2.0 � 10�3 168 0.0262 0.0644
1.0 � 10�3 191 0.0254 0.0538

Table 5
Four-dimensional problem. Effect of the initial LCVT training set size. The errors are
noted for the update scheme and for a static LCVT distribution with the same number
of samples.

Ninitial �initial Ntotal �final �LCVT

40 0.2079 468 0.0443 0.0852
80 0.1687 554 0.0396 0.0798
160 0.1226 629 0.0350 0.0761

Table 6
Four-dimensional problem. Effect of the value of �1 for stopping criterion.

�1 Ntotal �final �LCVT

4 � 10�3 250 0.0841 0.1061
3 � 10�3 302 0.0705 0.0939
2 � 10�3 385 0.0536 0.0922
1 � 10�3 554 0.0396 0.0798

Fig. 17. Arch geometry and loading.
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points Nconv for the stopping criterion is 62,500 and the number of
test points for the error measure is Ntest = 390,625. The values of �1

and �2 for the stopping criterion are 1.0 � 10�3 and 5.0 � 10�4

respectively. The error for the initial decision function is 16.87%,
which is reduced to 3.96% after the update. The total number of
training samples needed is 554. The error associated with decision
functions constructed with the same number of LCVT samples is
7.98%. The results are gathered in Table 5.

Convergence of the update algorithm is shown in Fig. 16. The y-
axis represents the fraction of convergence points changing sign
between successive iterations and the x-axis represents the itera-
tion number. Both the actual Dk values and the fitted exponential
curve are shown.

4.3.2. Study of the influence of initial training sample set
The influence of varying the initial training set size is studied.

The results are given in Table 5. In this case also, it is noted that
in general the accuracy achieved by the update algorithm is higher
compared to that obtained by a static LCVT DOE of the same size.

4.3.3. Study of the influence of stopping criterion
In this section, the number of required samples as a function of

�1 is studied (Table 6).
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Fig. 16. Four-dimensional problem. Convergence of the update algorithm.
4.4. Arch structure with discontinuous response – construction of
explicit decision function

The explicit design space decomposition using SVM is applied to
an arch structure subjected to a point load at the center (Fig. 17).
The arch is a typical example of a geometrically nonlinear structure
exhibiting a snap-through behavior once the limit load is reached.
The presence of discontinuities makes the application of response
surface methods or other conventional methods difficult or inaccu-
rate. However, the SVM-based method gives an explicit equation of
the decision function. The decision function thus obtained, can also
be used for the probabilistic optimization of the arch [16,12]. The
calculation of the probability of failure using MCS is made efficient,
as the explicit equation of the decision function is known in this
case.

The arch has a radius of curvature R = 8 m and subtends an an-
gle h = 14� at the center of curvature. The thickness t, the width w,
and the load F are random variables. The arch structure, simply
supported at the ends, is modeled in ANSYS using SHELL63 ele-
ments. Due to the symmetries of the problem, only one fourth of
the arch needed to be modeled. The range of values allowed for
the design parameters are tabulated in Table 7.

To construct the SVM decision function, first an initial LCVT dis-
tribution consisting of 10 points is generated with thickness, width
and load as the three variables. The variables are normalized by
dividing the values by their respective maximum values. The stud-
ied response is the displacement of the central node which is
solved for at each training sample (design configuration given by
the LCVT DOE) using ANSYS. The response shows a clear disconti-
nuity. The discontinuous variation of the displacement with re-
spect to the thickness and width is depicted in Fig. 18 for a fixed
value of the applied load.
Table 7
Range of design parameters for arch problem

Thickness (t) Width (w) Force (F)

Min value 3 mm 150 mm 2000 N
Max value 10 mm 500 mm 8000 N
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Fig. 18. Discontinuous response of arch. The response (displacement) is obtained
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Fig. 19. Arch problem. The left and right figures show the initial and final update

Fig. 20. Three-dimensional arch problem. Comparison of SVM decision functions constru
in the left figure are the decision functions using 48 LCVT samples and the update algor
constructed with 150 LCVT samples. (For interpretation of the references to colour in th
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The discontinuity in displacement is used to separate the re-
sponses into two clusters using K-means clustering. One of the
clusters corresponds to buckling (failure) while the other corre-
sponds to design configurations which do not exhibit buckling.
These two classes of samples in the design space are labeled as
‘‘+1” and ‘‘�1”. This information is input to the SVM algorithm to
create the initial decision function. Once the initial SVM decision
function is obtained, it is adaptively updated using the aforemen-
tioned algorithm. At every iteration the displacement of the new
point is solved for. The new sample is added to the training set,
and K-means clustering is then used again to reassign class labels
to all the training samples based on their respective displacement
values. After reassigning the class labels, SVM is reconstructed. The
information is used for the selection of a new training sample in
the next iteration, until the stopping criterion is met.

The number of convergence points Nconv for the stopping crite-
rion is 312,500, and the values of �1 and �2 are 1.0 � 10�3 and
5.0 � 10�4 respectively. The number of training samples required
to construct the final updated SVM decision function is 48. The ini-
tial and final SVM decision functions are shown in Fig. 19. For com-
parison, an SVM decision function is also constructed using 48
d SVM decision functions constructed with 10 and 48 samples respectively.

cted using update algorithm and otherwise. The dark brown and light grey surfaces
ithm respectively. The deep blue surface in the right figure is the decision function
is figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Arch problem. Convergence of the update algorithm.
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LCVT training samples. Fig. 20 shows that the decision function
generated using 48 LCVT samples (dark brown surface) deviates
from the updated SVM decision function (light grey surface). On
the contrary, the updated decision function is very similar to the
decision function (deep blue surface) constructed with a larger
LCVT training set of 150 samples.

Convergence of the update algorithm is shown in Fig. 21. The
fraction of convergence points changing sign between successive
iterations is plotted against the iteration number. Both the actual
Dk values, and the fitted exponential curve are shown.
Table 8
Study of increase in the accuracy with number of training samples (l = 1)

� Ntotal

12.71 20
6.12 35
3.00 91
1.50 106
1.00 118

Table 9
Study of increase in the accuracy with number of training samples (l = 1.5)

� Ntotal

19.62 20
9.90 61
5.00 124
2.50 232
2.00 253
5. Concluding remarks

5.1. Summary

An approach to adaptively update explicit decision functions
constructed with SVM is proposed. The technique provides an effi-
cient sampling strategy as it only uses relevant samples. It is there-
fore of interest for problems involving high computational times.
In addition, a major strength of the SVM-based explicit design
space decomposition lies in its ability to handle discontinuous
responses.

A general stopping criterion based on the variations of the pre-
dicted decision functions is described, thus providing an approach
to automatically find the number of required training samples. The
efficiency of the methodology is demonstrated through its applica-
tion to various test problems. An error measure was also developed
in the case of analytical test examples.

5.2. Discussion and future work

The proposed methodology could benefit from several incre-
mental improvements that are discussed below:

� The next stages of this research involve the application of the
scheme to more complex practical engineering problems involv-
ing more variables. However, in the case of computationally
intensive function evaluations (e.g., a nonlinear transient finite
element simulation), the objective is to accurately solve prob-
lems with 10–15 variables.

� The minimum distance between samples which is defined as a
function of the hypervolume of the design space, the problem
dimensionality, and the number of training samples, consists
of a constant coefficient. The effect of the value of the coefficient
needs to be studied more rigorously. The efficiency of the update
algorithm might be improved by updating the coefficient during
the course of the construction of the decision function.

� In the present approach, the convergence criterion is based on a
large number of convergence points. It is therefore, to be accu-
rate, limited to a handful of dimensions. Future research will
involve the development of an alternate convergence criterion.

In addition, the approach is suitable for cases where the state of
a system (e.g., failure or safe) cannot be assessed by comparing a
response to a threshold. That is, the decision function and its up-
date could be constructed from qualitative experimental data only
or combined with simulation results.

Appendix A. Study of the relation between accuracy and the
total number of training samples

In order to demonstrate the relation between the update strat-
egy and the quality of the decision function, the number of training
samples required to achieve a given accuracy is studied. The re-
sults, though generic, are shown for a particular two-dimensional
analytical function representing disjoint regions:

f ðx1; x2Þ ¼ x2 � x1 sinðlx1 þ 2Þ � 3 ð21Þ

The variables x1 and x2 are considered as uniformly distributed,
both having range [0,10]. The region where f(x1,x2) > 0 is labeled
+1 and the complementary region is labeled �1. The number of
training samples required to achieve specific levels of accuracy
are listed in Tables 8 and 9 for l = 1 and l = 1.5 respectively. The to-
tal samples required for successive increments in accuracy by a fac-
tor of 2 are noted in both cases. When a stopping criterion with
�1 = 1.0 � 10�3 and �2 = 5.0 � 10�4 is used, a final error of 2.45% is
obtained with l = 1. For l = 1.5, a final error of 4.58% with 140 train-
ing samples is attained using the same stopping criterion.

It is seen that the rate of increase in accuracy is high in the
beginning, and reduces gradually. The stopping criterion is a trade
off between high accuracy and computational cost (i.e., number of
samples), and depends on the requirements of a specific problem.
The visual representations of the decision functions with 1% and 2%
error for l = 1 and l = 1.5, respectively are depicted in Fig. 22.
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show the actual decision functions.
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