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An original technique to incorporate random fields non-intrusively in probabilistic design is presented.
The approach is based on the extraction of the main features of a random field using a limited number
of experimental observations (snapshots). An approximation of the random field is obtained using proper
orthogonal decomposition (POD). For a given failure criterion, an explicit limit state function (LSF) in
terms of the coefficients of the POD expansion is obtained using a support vector machine (SVM). An
adaptive sampling technique is used to generate samples and update the approximated LSF. The coeffi-
cients of the orthogonal decomposition are considered as random variables with distributions deter-
mined from the snapshots. Based on these distributions and the explicit LSF, the approach allows for
an efficient assessment of the probabilities of failure. In addition, the construction of explicit LSF has
the advantage of handling discontinuous responses. Two test-problems are used to demonstrate the pro-
posed methodology used for the calculation of probabilities of failure. The first example involves the lin-
ear buckling of an arch structure for which the thickness is a random field. The second problem concerns
the impact of a tube on a rigid wall. The planarity of the walls of the tube is considered as a random field.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Despite substantial research efforts and recent improvements,
probabilistic design still faces major challenges. First, it is well
known that the initial assumptions for the representation and
quantification of uncertainties are of prime importance. For in-
stance, for a problem with spatial variability (e.g., sheet metal
thickness distribution), one should choose to describe the problem
with random fields as they provide a more realistic representation
than uncorrelated random variables. These assumptions are as
important as the process used to propagate uncertainties. Second,
in a simulation-based context, the nature of the problem might se-
verely restrict the use of traditional algorithms. Of particular inter-
est are problems with non-smooth and discontinuous responses,
prohibitive computational costs, or disjoint failure spaces. Compu-
tational design for crashworthiness is an example which encom-
passes these difficulties.

The probabilistic design literature is mostly dominated by ap-
proaches and applications where uncertainties are quantified as
independent random variables. Techniques such as Monte Carlo
simulations (MCS), and first and second order reliability methods
(FORM and SORM) [1,2] are used to perform reliability assessment
using assumed probability density functions (PDFs). These reliabil-
ity assessment techniques are also embedded within optimization
ll rights reserved.

issoum).
problems to carry out reliability based design optimization (RBDO)
[3–5]. Many studies have also been dedicated to the reduction of
computational costs associated with these reliability assessment
and RBDO techniques. Approaches based on designs of experi-
ments (DOE) and surrogate models (response surfaces and meta-
models [6,7]) are common.

Recently, the authors have introduced the notion of explicit de-
sign space decomposition [8–10] whereby the LSFs are constructed
explicitly in terms of the design variables. The LSF construction is
based on a SVM which allows one to define the boundaries of fail-
ure regions that can be disjoint and non-convex. The approach al-
lows for a straightforward calculation of a probability of failure
using MCS. In addition, because this technique does not approxi-
mate responses but rather classify them as failed or safe, it natu-
rally handles discontinuities. The construction of explicit LSF is
also complemented by an adaptive sampling scheme which mini-
mizes the number of function evaluations and refines the LSF
approximation [10]. Therefore, the explicit design space decompo-
sition technique is aimed at handling the difficulties due to discon-
tinuities, complex failure domains and computational costs.

In the case of random fields, which is the focus of this article,
the literature revolves around stochastic finite elements (SFE).
SFE enable the propagation of uncertainties to obtain the distribu-
tion of the system’s responses using polynomial chaos expansion
(PCE) [11]. In order to represent a random field, it is approximated
using a Karhunen–Loeve expansion [11]. The coefficients of the
expansion are considered as random variables and the response
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is expanded on a specific polynomial basis (Hermite, Legendre etc.)
depending on the assumed types of probability distributions.

Several implementations of SFE are available in literature. The
early approaches required the modification of the equilibrium
equation to account for the uncertainty in the stiffness matrix
and the load vector [11]. This approach is by construction highly
intrusive and required specific codes. Newer methods developed
recently overcome this limitation and allow for the determination
of PCE coefficients using deterministic ‘‘black-box” function evalu-
ations (e.g., finite element analysis). Therefore, these methods can
be used with available commercial simulation packages without
modifying the code [12–14].

Most studies with SFE typically assume a prior distribution of
the random field. However, in practical situations, such as a ran-
dom field generated by a manufacturing process, the characteris-
tics of the random field are not known a priori. Therefore, the
only way to characterize a random field with a certain level of con-
fidence is from experimental observations. In addition, another
limitation of existing approaches is that the expansion of responses
on a polynomial basis hampers the use of PCE for problems with
discontinuities.

In this article, an alternate non-intrusive approach is proposed,
which provides a combined solution to the difficulties of realisti-
cally representing random fields, handling discontinuous re-
sponses, and efficiently calculating a probability of failure. This is
achieved by combining the explicit design space decomposition
approach with a proper orthogonal decomposition (POD) for the
characterization of random fields.

Based on a limited number of observations, referred to as snap-
shots, POD is used to extract the important features of a random
field in the form of eigenvectors of its covariance matrix [15].
The eigenvalues provide an indication of the importance of the cor-
responding features, thus allowing one to gauge their individual
contributions to the random field. This technique is similar to the
one found in pattern recognition [16].

Once the random field is characterized with the important fea-
tures, the corresponding eigenvectors form a basis that is used to
generate various random field configurations. This is required for
design purposes as an initial set of experimental snapshots may
not be sufficient. The random field is modified by varying the coef-
ficients of the eigenvectors in the POD expansion. For this purpose,
the response of the system is studied with a DOE [17,18] with re-
spect to the coefficients of the expansion. At this stage, the actual
PDFs of the coefficients are not considered, and they are assumed
uniformly distributed. This is done in order to extract as much
information as possible over the whole design space.

The responses, generated for each sample of the DOE, are clas-
sified into failure and non-failure using a threshold value or a clus-
tering technique such as K-means [19]. Clustering is used in the
case of discontinuous responses. These two classes are then sepa-
rated in the design space using an (explicit) SVM LSF [9]. In addi-
tion, in order to refine the LSF using a limited number of
samples, an adaptive sampling technique is used [10]. The sam-
pling strategy is based on the generation of samples that maximize
the probability of misclassification of the SVM while avoiding
redundancy of information.

The coefficients of the POD expansion are random variables and
their distributions, obtained from the snapshots, are found through
basic PDF fitting techniques. A similar approach was used in [20]
for the probabilistic design of turbine blade engine using POD
expansion for turbine blade random geometries.

In the proposed approach, probabilities of failure are efficiently
calculated using MCS. This simplicity, and this is the novelty of the
proposed approach, is due to the fact that the limit state function is
defined explicitly in terms of the coefficients of the POD. As men-
tioned previously, it is noteworthy that the accuracy of the limit
state function is improved through adaptive sampling [10] to limit
the number of function evaluations.

The proposed approach for the calculation of probabilities of
failure is applied to two problems. The first problem consists of a
three dimensional arch structure whose thickness is considered
as a random field. A failure criterion is defined based on a threshold
value on the critical load factor for linear buckling. The second
problem involves the impact of a tube on a rigid wall. The planarity
of the tube walls is modified by a random field, which leads to a
global buckling (considered failure) or crushing of the tube.

2. Summary of the proposed approach

For the sake of clarity, this section summarizes the main steps
of the approach, which are subsequently described in the following
sections. The stages of the approach are (Fig. 1):

� Collection of snapshots and construction of the covariance
matrix.

� Selection of the main features of the random field.
� Expansion of the field on a reduced basis. Sampling of the coef-

ficients using a uniform design of experiments (DOE).
� Construction of an explicit LSF using SVM in the space of

coefficients.
� Refinement of the LSF using adaptive sampling.
� Fitting of the probability density functions (PDF) of the POD

coefficients.
� Estimation of the probability of failure using Monte-Carlo simu-

lations (MCS).

3. Random field characterization

3.1. Data collection and covariance matrix

The first step in the characterization of a random field is the col-
lection of several observations of the random process output (e.g., a
metal sheet after forming). The process generates a scalar random
field Sð~XÞ, function of the position ~X. M samples, outputs of this
process, are obtained. On each sample, N measurements are per-
formed at distinct positions. An example of observations, referred
to as snapshots, is provided in Fig. 2. The snapshots can be con-
densed in the following matrix:

S ¼
S11 � � � S1M

..

. . .
. ..

.

SN1 � � � SNM

0
BB@

1
CCA ð1Þ

The general term Sij is the ith measurement on the jth snapshot. A
matrix U is then defined, whose general term is:

Uij ¼ Sij � Si; ð2Þ

where S is the average snapshot vector given by

Si ¼
1
M

XM

j¼1

Sij ð3Þ

The covariance matrix C, which is a square matrix of size N, is ob-
tained as:

C ¼ 1
M

UUT ð4Þ

Since the number of measurement locations N is usually high, the
covariance matrix is large.
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Fig. 1. Summary of the proposed methodology.
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Fig. 2. Example of M snapshots with N measurement points.
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3.2. Feature extraction and selection – POD

Proper orthogonal decomposition (POD) is used to decompose
the random field on a basis made of the eigenvectors of the covari-
ance matrix [21].

The random field is expressed in terms of the eigenvectors (i.e.
features) as:

Si ¼ Sþ
Xj¼M

j¼1

aijV j ð5Þ

Si is the measurement vector of the ith snapshot. Vj is the jth eigen-
vector of the covariance matrix and aij are coefficients. The eigen-
vectors being orthogonal, the general expression of the
coefficients is obtained by projection:

aij ¼
Ui:Vj

kVjk2 ; ð6Þ

where Ui ¼ Si � S is the ith centered snapshot and k:k is the Euclid-
ean norm. For normalized eigenvectors kVjk ¼ 1, and the coeffi-
cients are:

aij ¼ Ui � Vj ð7Þ

If the size of covariance matrix is large then finding the eigenvectors
might be difficult. If the number of snapshots M is lower than N, the
eigenvectors can be obtained efficiently by defining a matrix C0 as:
C0 ¼ 1
M

UTU ð8Þ

The eigenvectors of the covariance matrix C can then be found as
[22,16]:

Vi ¼ UV 0i; ð9Þ

where V 0i is an eigenvector of C0. The dimensionality of the square
matrix C0 being M, the solution of the eigenvalue problem is compu-
tationally more efficient.

Once the eigenvectors of the covariance matrix are obtained,
the ‘‘important” features are selected by investigating the relative
magnitude of the corresponding eigenvalues. The magnitude of
an eigenvalue is proportionally related to the importance of the
corresponding feature. Therefore by ranking the M eigenvalues,
the MS most important features can be selected. This ranking is
typically performed by inspecting the ratio qi of the ith eigenvalue
to the sum of all eigenvalues [23]:

qi ¼
kiPM
j¼1kj

ð10Þ

The final expression of the expansion reads:

fUi ¼
Xj¼MS

j¼1

aijV j; ð11Þ

where fUi is the approximate reconstruction of the ith centered
snapshot. The expansion containing less than M eigenvectors can
only approximately reconstruct the original snapshots. The mean
square error due to the truncation of the expansion is given by
the following relation [11]:

�2 ¼ 1
M

Xj¼M

j¼1

Sj � eSj

� �2
¼
XM

j¼MSþ1

kj ð12Þ

The upper bound of the sum is M and not N, since all the eigen-
values from M þ 1 to N are zero (C0 and C have the same eigenvalue
fractions).
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3.3. Probability density functions of the POD expansion coefficients

In order to perform probabilistic design, the PDFs of the coeffi-
cients need to be identified using data from the M snapshots. The
coefficients are calculated for each snapshot using Eq. (6). Thus, a
distribution consisting of M discrete values is obtained for each
of the MS coefficients. It is then possible to fit Weibull or Beta dis-
tributions to the data (Fig. 8) that will be used subsequently for the
calculation of the probability of failure.

4. Sampling-based coefficient selection and response
estimation

The characterization of a random field, and coefficient distribu-
tions is accomplished using the data from the snapshots. However,
the mere characterization of the random field is not sufficient to
account for uncertainties in the design process. For this purpose,
several instances of random fields (other than the snapshots) are
created by using different linear combinations of the eigenvectors.

The combinations are defined by selecting the POD coefficients
using a DOE. The bounds of the DOE are defined by the maximum
and minimum values of the coefficients obtained based on the
snapshots. At this stage, the coefficients are sampled uniformly,
and their PDFs are not yet taken into account. This is done to obtain
information uniformly over the entire coefficient space. The DOE
used for this study is generated by Latinized Centroidal Voronoi
Tessellations (LCVT) [18], as it provides a uniform distribution in
the space. An example of an LCVT DOE is shown in Fig. 3.

The system response is estimated at each sample using a simu-
lation code, such as a finite element software. The responses ob-
tained for the DOE samples are then classified into failure or safe
categories, based on a threshold response value or by using a clus-
tering method such as K-means (Fig. 4). The classification of re-
sponses into two distinct classes provides the information needed
to generate the explicit LSF as explained in the following section.

5. Explicit limit state function construction using SVM

5.1. Explicit limit state function

SVM is a classification tool that belongs to the class of machine
learning techniques. The main feature of SVM lies in its ability to
explicitly define complex decision functions that optimally sepa-
rate two classes of data samples. Thus, once the coefficient samples
are categorized into two classes, SVM can provide an explicit deci-
sion function (the limit state function) separating the distinct clas-
ses. The equation of the SVM LSF is given by equating the quantity s
in Eq. (13) equal to zero [24].
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Fig. 3. Example of LCVT DOE using 20 samples.
s ¼ bþ
XNSV

i¼1

kiyiKðxi;xÞ; ð13Þ

where xi is a vector in the space, K is a kernel function, yi is the class
label corresponding to xi that can take values �1, and b is the bias.
NSV is the number of support vectors, which are the samples lying
on s ¼ �1. Several kernel functions can be used, like polynomial,
Gaussian radial basis function, or splines [24]. The Gaussian kernel
is used for this study. An example of explicit LSF construction using
SVM is shown in Fig. 5.

The construction of an explicitly defined LSF allows one to asso-
ciate different regions of the space with distinct system behavior. It
−1 −0.5 0 0.5
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Fig. 5. Example of an explicit SVM LSF.



Fig. 7. Geometry and loading of the arch structure. The bottom figure shows the
variation of thickness in space for one snapshot.
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is then easy to calculate the probability of failure using the explic-
itly defined LSF, as predicting the class of a sample involves the cal-
culation of an analytical function.

5.2. Adaptive sampling

In order to predict the explicit LSF with a reduced number of
samples, an adaptive sampling technique [10,25] is used to select
the coefficients. The sample size of the initial LCVT DOE is kept
small, and a first approximation of the LSF is made. Subsequent
samples are then selected on the previous SVM decision function
(LSF), as the probability of misclassification is highest on the deci-
sion function. This leads to an efficient update of the SVM LSF.

The stopping criterion for the SVM update algorithm is based on
quantifying the change in the LSF between two successive itera-
tions. A set of Nconv convergence points are defined for this purpose,
and the change is quantified as the fraction of convergence points
changing their class (i.e. sign of SVM) between iterations k and
kþ 1:

Dk ¼
num sign si

k�1

� �
� sign si

k

� ��� �� > 0
� �

Nconv
ð14Þ

In order to implement a practical stopping criterion, the fraction Dk

is then fitted by an exponential curve:

D̂k ¼ AeBk
; ð15Þ

where D̂k represents the fitted values of Dk. A and B are the param-
eters of the exponential curve. For the update to stop, the value of
the fitted D̂k and its slope at the last iteration, should simulta-
neously be less than small positive numbers �1 and �2, respectively.

6. Probability of failure calculation – MCS

The explicit LSF allows one to efficiently calculate the probabil-
ity of failure using MCS. The PDFs of the coefficients, as found in
Section 3.3, are used to generate Monte-Carlo samples. Predicting
failure or non-failure at these samples involves calculating the sign
of the analytical expression of the LSF (Eq. (13)). An example of cal-
culation of the probability of failure is depicted in Fig. 6.

7. Examples

7.1. Linear buckling of an arch structure

This section provides an example of the effect of a random field
on the critical load factor of an arch structure. The structure is sub-
safe/feasible

failure / infeasible
explicit
SVM decision
function

Fig. 6. Probability of failure calculation using MCS.
jected to a unit pressure load on the top surface. The thickness of
the arch should ideally be constant over the entire surface; how-
ever it may vary due to uncertainties in the manufacturing pro-
cesses. These variations are represented, for this study, by an
artificial analytical random field (as opposed to real experimental
data). The arch has a radius of R = 200 mm, and it subtends an an-
gle of hmax ¼ 60� at the center (Fig. 7). The width of the arch is
w = 600 mm, and in the absence of any uncertainty it has a thick-
ness t = 3 mm. The random field representing the deviation from
the mean thickness is assumed to have the following form.

hðh; zÞ ¼ 1
4

cos
KPh
hmax

� �
sin

LPz
w

� �
ð16Þ

The snapshots are created by randomly selecting values of K and L. K
and L are uniformly distributed in an interval ranging from 0:7 to
1:3.

Following the creation of the snapshots, the important features
are extracted based on the corresponding eigenvalue fractions. For
example, if 200 snapshots are created, the four first ratios of eigen-
values as defined in Eq. (10) are 0.7208, 0.1325, 0.0800, and 0.0634.
The remaining ratios are clearly very small, and can be considered
equal to zero. The analysis of the system is done by approximating
the random field with three features.

Without the change in thickness introduced due to the random
field, the critical load factor is 2:3086. When variations due to the
random field are included, the critical load of the structure may in-
crease or decrease. To quantify the uncertainty, the probability of
having a critical load factor greater than 90% of the deterministic
critical load factor is calculated. A critical load factor less than
90% of the deterministic critical load factor is considered as failure.

7.1.1. Random field approximation with three features
The first three features are used to approximate the random

field. The corresponding eigenvalue fractions add up to 0.933.
The random field is described as:

Sða1;a2;a3Þ ¼ a1V1 þ a2V2 þ a3V3; ð17Þ

where a1;a2, and a3 are the coefficients of the expansion. The min-
imum and maximum values of the coefficients, obtained from the
snapshots, are given in Table 1. The PDFs of the coefficients are
shown in Fig. 8. Coefficients a1 and a2 are fitted to Beta distribu-
tions, while a Weibull distribution is used to fit a3.

Once the random field is characterized, the coefficientsa1;a2, and
a3 are sampled uniformly using 40 initial LCVT samples. The random
fields corresponding to these configurations of the coefficients are
reconstructed using Eq. (17). The critical load factor for each config-
uration is then obtained using a finite element analysis (using
ANSYS). The samples are then classified using the aforementioned



Table 1
Arch Problem. Ranges of coefficients based on the snapshots.

Coefficient Minimum value Maximum value

a1 �7:1718 5:2072
a2 �3:6051 3:2182
a3 �3:2041 3:2232
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Fig. 8. PDF for coefficients a1, a2, and a3 corresponding to the first three features for
the arch problem.

Fig. 9. Initial (top) and final (bottom) SVM LSF for the arch problem with three
features. The brown surface is the LSF separating failure (blue triangles) and safe
(red squares) classes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 10. Convergence of the SVM LSF update for the arch problem.
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failure criteria, and the classified configurations are the training
samples for SVM to predict an initial LSF. It is then refined using
the update algorithm, to construct the final LSF with 79 samples
(Fig. 9). The convergence of the SVM update algorithm is shown in
Fig. 10.

After obtaining the explicit LSF, MCS is carried out to calculate
the probability of failure using the PDFs the coefficients (Fig. 8).
In order to validate the predicted value of Pf , MCS is carried out
with 10,000 samples while varying the values of K and L with their
assumed distributions. Finite element analysis are carried out at
each of these samples to find the actual probability of failure.
The results are collected in Table 2.
7.1.2. Study of the influence of number of snapshots
In order to select the number of snapshots M, its influence on

the eigenvalue fractions qi are studied for the arch problem
(Fig. 11). It is seen that there is a significant change in the values
of qi initially. The values gradually stabilize around a constant va-
lue. A constant value suggests that adding snapshots does not pro-
vide much information to the random field. It is observed that the
amplitude of the perturbations decreases gradually, and a value of
M ¼ 200 is selected.



Table 2
Arch Problem. Comparison of predicted and actual probabilities of failure.

SVM-based MCS Brute-force MCS

Monte-Carlo samples 106 104

Pf 0:1291 0:1418
95% confidence interval ½0:1284;0:1298� ½0:1350; 0:1487�

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Fig. 11. Influence of the number of snapshots (M), shown for the first four features
of the arch problem. qi (i=1,2,3,4) are the eigenvalue fractions corresponding to the
first four features.

Fig. 13. Crushing (top) and global buckling (bottom) of a tube subjected to impact.
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7.2. Tube impacting a rigid wall

In this section the application of the proposed methodology is
shown on an impact problem. A tube of length l ¼ 1 m (Fig. 12)
is made to impact a rigid wall with velocity 15 m/s, and the result-
ing behavior is analyzed. The cross-section of the tube is a square
with side a ¼ 7 cm, and four masses of 25 kg each are attached
to the four rear corners. The two bottom corners in the front of
the tube are constrained in the transverse directions. The planarity
of the walls of the tube are modified by a random field given by:

hðxL; zLÞ ¼
A

1000
cos

3PxL

a

� �
sin

LPzL

l

� �
; ð18Þ

where xL and zL are the local coordinates at the four faces. xL varies
between � a

2 and þ a
2, while zL takes values between 0 and �l. A and

L are uniformly distributed random variables with ranges
½0:25;0:75� m and ½1;2�, respectively. The parameter A modifies
the amplitude of the random field, while the frequency is modified
Fig. 12. Tube impacting rigid wall. The bottom figure shows the effect of the
random field.
by L. 200 snapshots of the random field are created, by varying A
and L. The important features are then extracted using POD. The
first three ratios (Eq. (10)) of eigenvalues are 0.6985, 0.2630, and
0.0383. Only the first two features are selected to characterize
the random field.

The impact behavior of the tube falls into two main categories-
crushing and global buckling (Fig. 13). Due to the effect of the ran-
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Fig. 14. Discontinuous behavior of the tube response with respect to the
coefficients of the expansion. The bottom figure shows a two-dimensional view
of the top figure.



3654 A. Basudhar, S. Missoum / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3647–3655
dom field, the behavior can undergo sudden change from one state
to the other. The discontinuous behavior of the tube is shown in
Fig. 14.

It is desired that the tube should display crushing, and there
should not be any global buckling. In order to quantify the
behavior, the maximum of the two absolute transverse displace-
ments in x and y directions is studied. A low value of this quan-
tity indicates crushing behavior, while a large value shows that
global buckling has occurred. The probability of failure (global
buckling), due to the effect of the random field, is studied with
a thickness of 1.5 mm. The method can also be extended to carry
out optimization by including the design variables as additional
dimensions to the space (e.g., length or thickness).
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Fig. 16. PDF for coefficients a1, and a2 corresponding to the first two features for
the tube problem.
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Fig. 15. SVM LSF with two features. The black curve is the LSF separating global
buckling (blue triangles) and crushing (red squares). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
Following the random field characterization, the coefficients a1,
and a2 are sampled uniformly using 60 LCVT samples, and the cor-
responding random field instances are constructed using Eq. (11).
The ranges of the two coefficients are ½�0:0148; 0:0130� and
½�0:0081;0:0079�. The analysis is done using ANSYS LS-DYNA, to
find the transverse displacements. The samples are then classified
using K-means clustering, and the classified configurations are
used as training samples for SVM to predict the explicit LSF
(Fig. 15). After obtaining the explicit LSF, the probability of failure
is calculated using the PDFs of the coefficients shown in Fig. 16. The
coefficient a1 is fitted using a Weibull distribution, while a2 is fit-
ted with a Beta distribution. 106 MCS samples are used, and Pf is
found as 0.1243.
8. Conclusion

A technique for reliability assessment using random fields is
proposed. A new sampling-based method is used for constructing
various potential random field configurations. The method over-
comes the need for assumption on the random field distribution
by using experimental data and Proper Orthogonal Decomposition.
In addition the SVM-based method of constructing explicit LSFs
enables one to address discontinuous system responses, which is
successfully shown in the case of the tube impact problem. In
future study, the method will be extended for carrying out proba-
bilistic optimization. This can be easily performed by adding the
design variables as additional dimensions of the space while con-
structing the decision function. In the present study, analytical
random fields have been used due to lack of experimental data;
in the future, the methodology will be applied to data obtained
from actual experiments.
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