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Abstract This article presents an improved adaptive sam-
pling scheme for the construction of explicit decision func-
tions (constraints or limit state functions) using Support
Vector Machines (SVMs). The proposed work presents sub-
stantial modifications to an earlier version of the scheme
(Basudhar and Missoum, Comput Struct 86(19–20):1904–
1917, 2008). The improvements consist of a different choice
of samples, a more rigorous convergence criterion, and a
new technique to select the SVM kernel parameters. Of
particular interest is the choice of a new sample chosen to
remove the “locking” of the SVM, a phenomenon that was
not understood in the previous version of the algorithm. The
new scheme is demonstrated on analytical problems of up
to seven dimensions.

Keywords Support Vector Machines ·
Decision boundaries · Adaptive sampling

1 Introduction

In design optimization and uncertainty quantification, re-
sponse surfaces and metamodels (Myers and Montgomery
2002; Wang and Shan 2007; Simpson et al. 2008) are some
of the most commonly used approaches. Their purpose is to
provide an approximation of an otherwise costly response
from a computer simulation. Based on this approximation,
often referred to as a surrogate, an optimization or calcula-
tion of a probability of failure can be efficiently performed
(Helton 1993; Mourelatos et al. 2006; Queipo et al. 2008).
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Among the limitations of the surrogate-based approaches,
response discontinuities and the curse of dimensionality are
the two most well known hurdles. In order to use expensive
response evaluations in an intelligent manner and reduce
computational costs, adaptive sampling techniques, such as
Efficient Global Optimization (EGO) (Jones et al. 1998;
Bichon et al. 2009) have gained popularity. A similar scheme
for reliability analysis can be found in Bichon et al. (2007).

In order to tackle the discontinuity issue, the authors
have developed an approach whereby the constraints of
an optimization or the limit state function in a reliability
problem are constructed explicitly in terms of the vari-
ables. That is, responses are no longer approximated such
as in surrogate-based techniques. Therefore, the approach,
referred to as explicit design space decomposition (EDSD)
(Missoum et al. 2007; Basudhar et al. 2008), naturally han-
dles discontinuities.

In the current version of EDSD, Support Vector
Machines (SVMs) (Shawe-Taylor and Cristianini 2004; Tou
and Gonzalez 1974; Vapnik 1998) are used to construct the
explicit decision boundaries. The SVM-based EDSD has
several inherent advantages that make it an attractive tool
for optimization and probabilistic design (Basudhar et al.
2008; Basudhar and Missoum 2009a). Besides managing
discontinuities, this approach enables the construction of
highly nonlinear limit state functions and offers a simple
way to propagate uncertainties (Hurtado 2004). Also, the
technique can handle multiple failure modes simultaneously
at no extra cost (Basudhar and Missoum 2009b).

In order to limit the number of samples required for an
accurate approximation of SVM boundaries, an adaptive
sampling technique was developed. Both serial as well as
parallel update schemes were implemented for the selection
of samples. The scheme was successfully applied to prob-
lems up to five variables (Basudhar and Missoum 2007,
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2008). However, certain aspects of the update algorithm
were later understood that limited its application to prob-
lems with higher dimensionality.

In this article, an improved adaptive sampling technique
is proposed for refining SVM boundaries. The proposed
update scheme differs from the previous approach in three
major areas:

• Selection of samples: The samples chosen during the
adaptive scheme to refine the explicit boundary are now
defined through two optimization problems. Of particu-
lar interest is the choice of a sample whose purpose
is to remove potential locking of the SVM, a phe-
nomenon that was not understood in the first version
of the adaptive scheme (Basudhar and Missoum 2008).

• Convergence measure: The new convergence measure
is based on the comparison of coefficients of the poly-
nomial SVM between two successive iterations. This
approach is more rigorous and scalable than the previ-
ous method which involved a very large (non-scalable)
number of so-called convergence points.

• Selection of SVM parameters: The algorithm uses a
polynomial kernel function to define the SVM bound-
aries instead of a Gaussian radial basis function. The
polynomial degree is automatically selected and modi-
fied. In the previous scheme, fixed parameter values of
the kernel were used.

In order to demonstrate the efficacy of the proposed algo-
rithm, analytical examples are presented with up to seven
variables. The evolution of the convergence and error mea-
sures as a function of the number of samples is presented.
The actual functions to be approximated are derived from
a single general formula, function of dimensionality. This
was done with the purpose of having comparable levels of
difficulty for all the examples.

The remainder of this paper is constructed as follows: in
Section 2, a short introduction to SVM is given. The pre-
vious EDSD adaptive sampling methodology is explained
in Section 3. Section 4 gives a summary of the limita-
tions of the previous scheme. This is followed by a section
explaining the new methodology. Finally, the examples are
presented in Section 6.

2 Support Vector Machines (SVMs)

An SVM is a machine learning technique used for the clas-
sification of data. It has the ability to explicitly define
multidimensional and complex boundaries that optimally
separate two classes of data (Shawe-Taylor and Cristianini
2004; Tou and Gonzalez 1974; Vapnik 1998; Gunn 1998).

These features make it a natural choice for the construction
of constraints or limit state functions (Section 3).

The purpose of this section is to give a brief overview of
the SVM classification methodology and expose the reader
to the SVM jargon. Consider a d-dimensional space sam-
pled with N training points xi . Each point is associated
with one of two classes characterized by a value yi = ±1.
The SVM algorithm finds the boundary that optimally sep-
arates the two classes of data samples. The corresponding
boundary equation is:

s(x) = b +
N∑

i=1

λi yi K (xi , x) = 0 (1)

where b is a scalar referred to as the bias, λi are Lagrange
multipliers obtained from the quadratic programming opti-
mization problem used to construct the SVM. K is the
kernel of the SVM. With (1), the classification of any
arbitrary point x is given by the sign of s.

The optimization problem used to solve for the optimal
SVM classifier involves the maximization of a “margin”.
The notion of margin can be simply understood by inspect-
ing a linear SVM classifier (Fig. 1). In this case, the margin
is the distance between two parallel hyperplanes, referred to
as support hyperplanes, given by s(x) = ±1 in the space
of input variables xi . These support hyperplanes go through

Fig. 1 Linear SVM classifier separating class +1 from class −1. The
margin is the distance between the dashed lines which are the support
hyperplanes. The support vectors lying on the support hyperplanes are
shown by black circles
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one or several training samples referred to as support vec-
tors. In addition to the maximization of the margin, the SVM
optimization problem is subjected to a constraint enforc-
ing that the margin space should not contain any training
sample.

The Lagrange multipliers associated with the support
vectors are positive while the other samples have Lagrange
multipliers equal to zero. That is, an SVM classifier trained
using only the support vectors is identical as the one
obtained using all the data samples. Typically, the number
of support vectors is much smaller than N.

The SVM boundary can be linear or highly nonlinear.
The kernel K in the SVM equation can have different forms
such as polynomial, Gaussian radial basis function, multi-
layer perceptron etc. An interesting feature that facilitates
the construction of an SVM is that there is always a higher
dimensional space (the feature space) where the boundary
is linear.

The previous EDSD studies with SVM (Basudhar and
Missoum 2008; Basudhar et al. 2008) used Gaussian radial
basis functions. In this article, a polynomial kernel is used.
The motivation for this choice is explained in Section 5.4. A
polynomial kernel is given as:

K (xi , x) = (1 + 〈xi , x〉)p (2)

where p is the degree of the polynomial kernel. An example
of SVM classification with a polynomial kernel is depicted
in Fig. 2.

Fig. 2 SVM boundary based on a polynomial kernel separating
disjoint classes (+1 and −1)

3 Previous methodology for the identification
of explicit boundaries

The previous work on the construction of explicit bound-
aries is presented in this section. A brief overview of the basic
EDSD approach and a previous adaptive sampling scheme
is presented (Basudhar and Missoum 2008; Basudhar et al.
2008). The limitations of the previous scheme are identified
and a new adaptive sampling scheme is described.

3.1 Basic EDSD methodology with a fixed design
of experiments

The main idea behind EDSD (Basudhar et al. 2008) is to
solve a classification problem and divide the space into re-
gions corresponding to specific states of a system. The
boundary separating the distinct regions can be used as a lim-
it state function or an optimization constraint. In order to
construct the classifier, the space is first sampled using a
uniform design of experiments (DOE) such as Improved
Distributed Hypercube Sampling (IHS) (Beachkofski and
Grandhi 2002) or Centroidal Voronoi Tessellations (CVT)
(Romero et al. 2006). These samples are then classified
based on the corresponding response values, followed by
the construction of a boundary that separates the distinct
classes of samples. The use of SVMs for the definition of
explicit boundaries has been found to be flexible due to their
ability to represent highly nonlinear boundaries and disjoint
regions (Fig. 2) (Basudhar et al. 2008). The main steps of
EDSD using an SVM classifier are listed in Algorithm 1.

3.2 Previous adaptive sampling scheme
for the construction of boundaries

The use of SVM for EDSD was first proposed in order to
handle the probabilistic design of problems with nonlinear
limit state functions and response discontinuities (Basudhar
et al. 2008). Subsequently, an update scheme was devel-
oped which reduced the number of samples required to

Algorithm 1 Basic EDSD methodology using an SVM
classifier

1: Sample the space with a CVT DOE.
2: Evaluate the system response at each sample (e.g. using

a finite element code).
3: Classify the samples into two classes (e.g. safe and

failed) based on the response values. The classification
is performed using a threshold value or a clustering
technique if the response are discontinuous (Basudhar
et al. 2008).

4: Construct the SVM classifier.
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construct an accurate decision function (Basudhar and
Missoum 2008). A relatively small DOE was used to con-
struct the initial SVM boundary. It was then refined with
samples selected based on the following criteria:

• The samples were selected in regions with the high-
est probability of misclassification. Such regions are
identified as the ones lying on the SVM boundary.

• The samples were selected in sparsely populated
regions of the space.

A convergence measure was obtained by quantifying the
change in SVM between two iterations. For this purpose, a
set of convergence points was defined over the entire space.
The change was quantified as the fraction of convergence
points with a change of predicted class by the SVM between
two consecutive iterations.

4 Limitations of the previous adaptive sampling scheme

The previous adaptive sampling technique was a major
improvement over the first EDSD approach with a fixed
DOE. That is, the number of samples to achieve a certain
accuracy of the decision function was reduced. However,
certain limitations of the methodology, object of this article,
were gradually realized:

• The sample selection sequence: The previous algorithm
consisted of three sample selection steps. The first step

involved the selection of a sample on the boundary
with a constraint on the minimum allowable distance
to an existing sample. In the second step, a sample
was selected by maximizing the distance to the previous
sample. This sample was constrained to lie on the SVM
boundary and to be located at a minimum distance from
any existing sample. However, the first step did not pro-
vide a unique solution. Further, steps 1 and 2 (Basudhar
and Missoum 2008) involved arbitrary coefficients for
defining the minimum allowable distance to existing
samples. For these reasons, these two steps do not seem
to be justified unlike the third step, which is the basis
of the new proposed update scheme (Section 5.1). This
step locates a sample on the boundary so as to maximize
the minimum distance to existing samples.

• “Locking” of the SVM: The previous scheme involved
the selection of new samples only on the SVM bound-
ary. The motivation was that these samples have the
largest “probability of misclassification”. Also, it was
reasoned that since a sample selected on the bound-
ary lies in the margin of SVM, such a sample compels
the boundary to be modified, thus adding useful infor-
mation to the problem. However, it was later realized
that the modification of SVM boundary due to such a
sample may be negligible if the margin (loosely, the
local distance between s(x) = +1 and s(x) = −1) is
thin, thus wasting function evaluations. When locating
a sample on the SVM within a thin margin, which by
construction should not contain any sample, the change

x1

SVM boundary before 
primary sample evaluation

SVM boundary after primary sample 
evaluation (negligible change)

SVM boundary s(x)=0

s(x)=+1

actual boundary

x2

margin (thin)

magnified region

primary sample

x2

evaluated primary sample

primary sample

difference between
SVM and actual 
boundaries

nonconvergence of
SVM to the actual
boundary

negligible change

x1

negligible 
change sparse data on blue triangle

side of the boundary

Fig. 3 Locking of the SVM due to reduction of the margin (region between dashed red curves). A new sample on the boundary (brown circle), belong-
ing to the magenta square class, produces negligible change although there is no sample belonging to the opposite class (blue triangles) nearby
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in boundary due to the update is inevitably small. If this
small change occurs in a region with a relatively uni-
form amount of information from both classes in the
vicinity of the added sample, then the SVM can be
assumed to be locally accurate. However, if the data
from one class is sparse, then the low convergence rate
becomes an issue. This is referred to as the “locking”
of the SVM (Fig. 3). As a result of the locking phe-
nomenon, the SVM boundary may not converge to
the actual one with reasonable amount of data in cer-
tain localized regions. In addition to primary samples
selected on the SVM boundary, a secondary sample
(see Section 5.2) directed specifically at the preven-
tion of SVM locking is evaluated in the new proposed
algorithm (Fig. 5).

• Scalability of the convergence measure: The conver-
gence measure in the previous scheme required a large
number of convergence points in the space. The change
was quantified as the fraction of these convergence
points that switched class between two consecutive iter-
ations based on the respective SVM boundaries. How-
ever, accuracy of the convergence measure depended on
the number of convergence points that were defined.
Since a large number of points was required, the
approach was not scalable to high dimensional prob-
lems. A new, more rigorous, convergence measure is
based on the comparison of coefficients of the poly-
nomial SVM equations between successive iterations.
This approach is scalable to high dimensional problems.

• SVM parameters were f ixed: The kernel parameters
for constructing the SVM boundary were fixed at the
start of the previous scheme. In the literature, selection
of kernel parameters is usually performed using cross-
validation (Cawley and Talbot 2003). In this paper, a
method to automatically select the polynomial kernel
parameters during the update is presented (Section 5.3).

5 Improved adaptive sampling methodology

The new scheme developed to overcome the aforementioned
limitations associated with the previous adaptive sampling
scheme is presented in this section. The summary of the
methodology for constructing the boundaries is presented
in Algorithm 2. For the sake of clarity, the details of the
scheme are presented in the subsequent sections.

5.1 Selection of primary samples on the SVM boundary

At each iteration, two primary samples and one secondary
sample are evaluated. The selection of a primary sample is
performed by maximizing the distance to the closest training
sample while lying on the SVM boundary (4). As mentioned

Algorithm 2 Methodology for the construction of explicit
boundaries

1: Sample the space with a CVT DOE.
2: Evaluate the system response at each sample (e.g. using

a finite element code).
3: Classify the samples into two classes (e.g. safe and

failed) based on the response values. The classification
is performed using a threshold value or a clustering
technique.

4: Set iteration k = 0
5: Select the parameters for constructing the SVM bound-

ary (Section 5.3).
6: Construct the initial SVM boundary that separates the

classified samples.
7: repeat
8: k = k + 1
9: Select a primary sample on the SVM boundary

(Section 5.1) and reconstruct the SVM with the new
information.

10: Repeat 9 to select another primary sample.
11: Select a secondary sample to prevent locking of the

SVM (Section 5.2). Reconstruct the SVM boundary.
12: Modify the SVM parameters if any of the training

samples are misclassified (Section 5.3). Reconstruct
the SVM boundary.

13: Calculate the convergence measure �k .
14: until �k ≤ δ1

in Section 3.2, a sample on the boundary has the highest
probability of misclassification. Also, such a sample lies in
the margin of SVM and, therefore, compels the boundary
to change. The selection of samples in sparsely populated
regions avoids redundancy of data. Figure 4 shows the selec-
tion of a primary sample and the SVM boundary update due
to it. The optimization problem to select a primary sample
is:

max
x

||x − xnearest ||
s.t. s(x) = 0 (3)

where xnearest is the training sample closest to the new
sample. This is a “maxmin” problem for which the objec-
tive function is non-differentiable. The problem is made
differentiable by reformulating it as:

max
x,z

z

s.t. ||x − xi || ≥ z i = 1, 2, ..., N

s(x) = 0 (4)

In this work, the differentiable formulation of the global
optimization problem is solved using a local optimizer
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Fig. 4 Selection of a new
training sample on the SVM
boundary while maximizing the
distance to the closest sample
(left). Updated SVM decision
boundary (right)

x1

SVM boundary before 
primary sample evaluation

SVM boundary update due to
primary sample evaluation

x2

margin
primary sample

x1

x2

evaluated
primary sample

updated 
SVM boundary

distance to closest
sample (maximized)

SVM boundary s(x)=0

s(x)=+1

(sequential quadratic programming) with multiple starting
points given by the existing training samples.

5.2 Selection of a secondary sample to prevent locking
of the SVM

As pointed out in Section 4, the rate of convergence of the
SVM boundary to the actual one may be very slow due to
the SVM locking phenomenon (Fig. 3). The selection of
a secondary sample to prevent the locking of the SVM is
described in this section.

The secondary sample is aimed at removing the locking
by positioning a sample in a region where data from one
class is sparse in the vicinity of the boundary. If this sample
is misclassified by the current SVM, this might lead to sig-
nificant change of the SVM boundary (Fig. 5). The selection
of the sample is a two step process:

• The support vector x∗
sv farthest from existing samples

of opposite class is identified. A hypersphere of radius

R centered around the support vector is then defined.
R is chosen as half the distance from x∗

sv to the closest
sample xopp belonging to the opposite class:

R = 1

2

∣∣∣∣x∗
sv − xopp

∣∣∣∣ (5)

• The secondary sample is selected within the hyper-
sphere so that it belongs to the opposite class of x∗

sv
according to the current SVM prediction:

min
x

s(x)y∗
sv

s.t.
∣∣∣∣x − x∗

sv

∣∣∣∣ ≤ R

s(x)y∗
sv ≤ 0 (6)

where y∗
sv is the class label (±1) of the selected support

vector x∗
sv . The objective function in (6) also appears as

a constraint in order to avoid an optimum solution with
a positive objective function value, i.e. to avoid a solu-
tion for which the current SVM provides the same class

SVM boundary before 
secondary sample evaluation

SVM boundary after secondary 
sample evaluation 

x2

secondary sample

x1

2R

R

x2

evaluated 
secondary sample

x1

SVM boundary s(x)=0

actual boundary

new SVM boundary
(significant change)

selected support vector

Fig. 5 Evaluation of a secondary sample to prevent locking of the SVM boundary
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for the support vector and the secondary sample. In the
cases where the problem is infeasible, a primary sample
is added (4). Also, it is noteworthy that the choice of
R as one half of

∣∣∣∣x∗
sv − xopp

∣∣∣∣ will prevent the sample
to be chosen too close to regions with existing samples
such as xopp itself.

5.3 Selection of kernel parameters

The selection of kernel parameters is of prime importance
for the construction of the SVM decision boundary. Sev-
eral studies in the computer science community use cross-
validation techniques for the selection of kernel parameters
(Cawley and Talbot 2003). In this article, cross-validation is
not used. However, the SVM parameters are selected such
that the boundary constructed is the “simplest” one without
any training sample misclassification. For the polynomial
kernel used in this study, this corresponds to the lowest
degree polynomial, which does not produce any train-
ing misclassification (misclassification of already evaluated
training samples).

5.4 Convergence criterion

Because the actual function is not known in general, the con-
vergence criterion for the update algorithm is based on the
variation of the approximated SVM boundary between two
consecutive iterations. Since the polynomial kernel is used,
a rigorous quantification of the variation is possible based
on the coefficients. Unlike the previous scheme (Basudhar
and Missoum 2008), this does not require a large number of
“convergence” points. In order to compare the polynomials
at iterations k −1 and k, the coefficients are scaled such that
the largest coefficient (absolute value) at iteration k −1 is 1.
The corresponding coefficient for iteration k is also set to 1.
The calculation of the convergence measure is implemented
as follows:

• Find the polynomial coef f icients: In order to find the
polynomial coefficients, a linear system of equations
is solved. For a d-dimensional problem and a polyno-
mial kernel of degree p, the number of coefficients is(d+p

p

)
. In order to find the coefficients, a set of

(d+p
p

)

points is selected from a CVT distribution and the cor-
responding SVM values are calculated. The coefficients
are obtained as:

α = Q−1s (7)

where s is the array of SVM values. The i th row of the
matrix Q is given as:

Ri =
(

1 x1 x2 . . . xd . . . . . . x p
1

(
x p−1

1 x2

)
. . . x p

d

) ∣∣
xi

(8)

Thus, the matrix Q is a square matrix of size
(d+p

p

) ×
(d+p

p

)
. Note that the matrix Q is invertible and well

conditioned as the samples to construct it are uniformly
distributed with CVT.

The coefficients could also be calculated using multi-
nomial expansion (Ma 2001) and (1). The coefficient of
a general term x p1

1 x p2
2 . . . x pd

d , except for the constant
term, in the SVM equation is given as:

αp1 p2...pd = p!
∏d

j=0 p j !
N∑

i=1

⎛

⎝λi yi

d∏

j=1

x
p j
j

⎞

⎠
∣∣∣∣
xi

where
d∑

j=0

p j = p (9)

The constant term in the SVM equation is equal to
b (1).

• Comparison of the coef f icients between iterations: In
order to compare the coefficients between successive
iterations k − 1 and k, the coefficients corresponding
to different degrees are separated into distinct arrays.
The array of coefficients corresponding to degree m
is denoted as αm . The evolution of the coefficients is
studied separately for each degree (Fig. 8). The reason
for studying each degree separately is that an identi-
cal relative change for two coefficients, especially for
the largest and smallest degrees, may not lead to the
same change in the boundary. The relative change in
the norm of αm is calculated for each degree and the
maximum value is used as a measure of convergence.
The convergence measure is given by:

�k = max
m

(
�

(m)
k

)
(10)

where �
(m)
k is given as:

�
(m)
k =

∣∣∣
∣∣∣α(k)

m − α
(k−1)
m

∣∣∣
∣∣∣

∣∣∣
∣∣∣α(k−1)

m

∣∣∣
∣∣∣

(11)

5.5 Error measures

The accuracy of an approximated SVM boundary is judged
by its fidelity to the actual function. In practical problems,
an error metric may not be available. However, error mea-
sures can be obtained in the case of academic analytical test
functions. Two distinct error metrics are presented:

• Based on “test” points: The error may be quantified
as the fraction of the spatial volume which is misclas-
sified by the SVM boundary. For this purpose, a set
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of Ntest randomly generated “test” points is used to
densely sample the whole space. The values of both the
actual function and the SVM are calculated for each test
point. Since the actual function is analytical, these func-
tion evaluations are efficiently performed. The number
of test points being much larger than the number of
sample points, the error can be assessed by calculating
the fraction of misclassified test points (Basudhar and
Missoum 2008). A test point for which the SVM and
the actual function provide different signs is considered
misclassified. The error εk is given below:

εk = num (s(xtest )ytest ≤ 0)

Ntest
(12)

where xtest and ytest represent a test sample and the
corresponding class value (±1) for the actual (known)
decision function.

• Based on polynomial coef f icients of the SVM boundary:
εk is a good measure of the fraction of misclassified
space if the space is sampled densely. However, the
approach is limited to a few dimensions due to con-
straints on computational resources. Fortunately, a mea-
sure based on polynomial coefficients is possible for
actual decision boundaries represented by polynomials.
The relative error Ek is given by:

Ek =
∣∣∣∣α(act) − α(k)

∣∣∣∣
∣∣∣∣α(act)

∣∣∣∣ (13)

where α(act) is the array of the polynomial coefficients
for the actual function.

6 Examples

Several test examples demonstrating the ability of the
update methodology to reconstruct known analytical func-
tions are presented. The analytical decision functions are
written in the form f (x) = 0. In order to perform the SVM
classification, the samples corresponding to f (x) > 0 and
f (x) < 0 are labeled +1 and −1 respectively.

In Section 6.1, the application of the update scheme to
problems with up to seven variables is presented. The evo-
lution of the new convergence and error measures during
the update are shown. Section 6.2 presents an example of
SVM locking. In order to show the advantage of the new
scheme in the removal of locking, a comparison to the adap-
tive sampling scheme without secondary sample evaluation
is provided for this example.

The following notation will be used to present the
results:

• Ninitial is the initial training set size.
• Ntotal is the total number of samples.

Fig. 6 Three-dimensional problem with disjoint regions. Actual deci-
sion boundary

• εini tial and ε f inal are the test point-based errors associ-
ated with the initial and final SVM decision boundaries
respectively.

• Einitial and E f inal are the errors associated with the
initial and final SVM decision boundaries respec-
tively, based on the comparison with the polynomial
coefficients of the actual functions.

6.1 Example 1: application to high dimensional problems

This section presents the application of the new update
scheme to three analytical test functions of different

Fig. 7 Three-dimensional problem with disjoint regions. Updated
SVM boundary (light blue surface) and the actual decision boundary
(dark brown surface)
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dimensionality that are derived from the same general equa-
tion. The functions presented consist of three, five and
seven variables, and represent non-convex and disjoint
regions. The general equation written as a function of the
dimensionality d is:

f (x) =
d∑

i=1

(xi + 2β)2 − 3
d−2∑

j=1

j+2∏

l= j

xl + 1 = 0

β = −1 mod(i, 3) = 1

β = 0 mod(i, 3) = 2

β = 1 mod(i, 3) = 0 (14)

For example, the decision function in a three-
dimensional case (15) is obtained by substituting d = 3 in
the general equation. The actual boundary (decision func-
tion) for the three-dimensional case is plotted in Fig. 6). It
forms several disjoint regions in the space.

f (x) = (x1 − 2)2 + x2
2 + (x3 + 2)2 − 3x1x2x3 + 1 = 0

(15)

The polynomial kernel is used to construct the SVM
boundary in each of the examples. The degree of the poly-
nomial is automatically selected as explained in Section 5.3.

Fig. 8 Three-dimensional problem. The bottom right f igure shows the square root of the convergence measure. The other figures show the
variation of the coefficients corresponding to polynomial degrees 1, 2, 3
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Fig. 9 Comparison of the errors associated with the three, five and
seven-dimensional examples

As evident from (14), the actual decision functions are poly-
nomials of degree 3. It is observed that for all the examples
the algorithm automatically selects a polynomial kernel of
degree 3 to construct the SVM boundary. Starting from rela-
tively small CVT DOEs, the update algorithm is run up to a
fixed number of iterations for each of the examples to study
the evolution of the error and convergence properties of the
algorithm. No actual convergence threshold is set for these
problems. The initial and final values of the error measure
εk are calculated using 107 test points for all the examples.
For the optimization problems in (4) and (6), a convergence
criterion of 10−3 was used on the objective function and the
variables.

The results of the update for all three examples are
listed in Table 1. The final SVM boundary for the three-
dimensional case is plotted in Fig. 7. The convergence plot
for the three-dimensional example is depicted in Fig. 8.
The square root of the convergence measure �k (10) is
used for better readability of the plot by compressing the

difference between the largest and the smallest values. The
quantities �

(1)
k , �

(2)
k and �

(3)
k (11) are also shown. The plot

for �
(1)
k has a large peak in the beginning; however, being

associated with the linear terms, this may not correspond to
the largest change in the SVM. At the end of the update all
the quantities (�(1)

k , �
(2)
k and �

(3)
k ) converge to zero. The

errors (Ek) for the three examples are plotted together in
Fig. 9. The initial and final values of the error measure εk

are also provided in Table 1. The final error ε f inal , which
measures the discrepancy between the approximated and
the actual boundary based a large number of test samples
is lower than 0.1% even for the seven-dimensional exam-
ple. Similarly, the error E f inal , based on the polynomial
coefficients, is also low. It must be emphasized that the lat-
ter measure, although less intuitive than ε f inal , allows one
to quantify the error in higher dimensional spaces.

6.2 Example 2: comparison of the update schemes
with and without secondary sample evaluation

In order to depict the importance of evaluating secondary
samples, which is a major addition in the proposed new
update scheme, a two-dimensional analytical test example
is presented. The equation of the actual decision bound-
ary is:

f (x) = x2 − 2 sin(x1) − 5 = 0 (16)

The initial SVM boundary is constructed using 20 CVT
samples. It is then updated using the new proposed scheme.
The update is run up to 50 iterations and the final SVM
boundary is constructed with a polynomial kernel of degree
4. In order to demonstrate the effect of secondary sample
evaluations, the results are compared to the SVM bound-
ary obtained after 50 iterations using primary samples only.
The final SVM boundaries using the two schemes are plot-
ted in Fig. 10. The comparison of the evolution of the
error measure εk , with and without secondary samples, is
shown in Fig. 11. The final decision boundary using the new
scheme is close to the actual boundary whereas the scheme
without secondary sample evaluation displays the locking
phenomenon in some localized regions.

Table 1 Number of samples
and corresponding errors for the
three examples

d Ninitial Einitial (%) εini tial (%) I terations Ntotal E f inal (%) ε f inal (%)

3 40 58.25 9.4 200 640 0.01 1.9 × 10−3

5 160 55.93 14.1 400 1, 360 0.47 8.5 × 10−3

7 640 46.44 8.6 800 3, 040 3.54 8.9 × 10−2
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Fig. 10 Comparison of update schemes with (new scheme) and without (previous scheme) secondary samples. The regions where the SVM
boundary using the old scheme differs from the actual boundary are circled in the left figure. The boundary using the new scheme (right) is very
close to the actual boundary

7 Discussion

This section presents a discussion on some of the features of
the SVM update. The effects of the new proposed method
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Fig. 11 Comparison of the evolution of error measure εk using the
update schemes with (new scheme) and without (previous scheme)
(Basudhar and Missoum 2008) secondary samples

on the update, as well as some possible improvements are
discussed.

• Ef fect of the new sampling scheme on SVM locking
and convergence of the update: One of the most impor-
tant contributions of this work is the identification of
the “SVM locking” phenomenon as well as the devel-
opment of a remedial solution. The proposed solution
consists of using a “secondary” sample that leads to a
more uniform distribution of samples in the vicinity of
the locking. The locking phenomenon and the effect of
the secondary samples are depicted in Figs. 3 and 5, as
well as in an example in Section 6.2. It is noteworthy
that although the term “SVM locking” may suggest that
it entirely “stops” the SVM update, in reality, the update
is believed to be convergent even without the locking
removal step (secondary sample evaluation). However
this would require a large number of samples, which
would defeat one of the main purposes of the adap-
tive sampling scheme. The use of secondary samples
enables one to reduce the number of necessary samples
by efficiently reducing the local locking phenomena
whose removal would otherwise require many function
calls.
Another noteworthy feature of the locking phenomenon
stems from the fact that it is a local phenomenon. For
this reason, there might not always be a clear difference
between the global convergence rates of the proposed
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scheme and the adaptive sampling scheme without sec-
ondary samples. However, these local errors in the
SVM boundary construction might have a significant
influence on the optimum solution or the probability of
failure calculated using the SVM boundary. Therefore,
it is important to remove the locking using secondary
samples. Also, it is expected that the locking phe-
nomenon may have a greater influence on the global
convergence rate in higher dimensions. This needs a
detailed study in the future.

• Optimization of the sampling sequence: Although the
proposed sampling scheme has some clear advantages
in the removal of the locking, there is a scope for fur-
ther improvement of the approach. The frequency of
evaluating secondary samples is not optimized in this
work; there is no scheme to detect whether or not
a secondary sample is required. Therefore, secondary
samples are selected systematically (one for every two
primary samples) in regions that are most likely to
require a secondary sample. Such regions are identified
as the ones where data from one class is sparse in the
vicinity of the boundary. A scheme to detect whether a
secondary sample needs to be evaluated may be useful.
Such a scheme may be devised based on a critical dis-
tance from existing samples. However, ways to define
the critical distance need to be studied.

• Choice of the kernel: As mentioned in Section 5.4, the
polynomial kernel used in this paper allows for a rig-
orous convergence measure based on the polynomial
coefficients. Unlike the previous scheme (Basudhar and
Missoum 2008), this does not require a large number
of “convergence” points. However, the polynomial ker-
nel is not necessarily superior to other kernels, such as
the Gaussian kernel, in terms of the number of evalua-
tions. A similar convergence criterion may be used with
a Gaussian kernel by expanding the Gaussian kernel in
order to compare polynomial coefficients. However, the
number of terms in the expansion of the Gaussian ker-
nel may be crucial and needs to be studied. In terms of
the methodology to select new samples, the update will
remain the same irrespective of the kernel.

8 Concluding remarks

8.1 Summary

A new adaptive sampling scheme for explicit design space
decomposition with SVM decision boundaries has been
developed. The ability of the method to accurately recon-
struct analytical functions has been demonstrated for prob-
lems up to seven dimensions. The proposed algorithm

consists of a set of improvements to a previous adaptive
sampling methodology by the authors. Specifically, the
sampling strategy has been revised and a more rigorous con-
vergence measure has been developed. The new sampling
scheme helps to remove the phenomenon of SVM locking.
The results from the application of the approach to highly
nonlinear examples of up to seven variables are promis-
ing. The examples consist of decision boundaries that form
multiple disjoint regions in the space.

8.2 Future work

Although this paper introduces some major improvements
to the previous method (Basudhar and Missoum 2008),
it could benefit from some relatively minor incremental
changes as mentioned in the discussion section. Improve-
ments to further reduce the number of samples are being
considered. Specifically, a scheme to detect whether a sec-
ondary sample needs to be evaluated may be useful. Also,
the polynomial kernel has been used in this work as it
provides a rigorous convergence criterion based on the poly-
nomial coefficients. In the future, the method will be gen-
eralized by enabling the use of the polynomial coefficient
based convergence criterion for the Gaussian kernel, as
explained in the discussion section. In addition to the
modifications to the methodology, the approach will also
be applied to define decision boundaries for the reliability
analysis and optimization of complex systems.
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