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ABSTRACT

This dissertation presents a sampling-based method that can be used for uncertainty

quantification and deterministic or probabilistic optimization. The objective is to

simultaneously address several difficulties faced by classical techniques based on

response values and their gradients. In particular, this research addresses issues

with discontinuous and binary (pass or fail) responses, and multiple failure modes.

All methods in this research are developed with the aim of addressing problems

that have limited data due to high cost of computation or experiment, e.g. vehicle

crashworthiness, fluid-structure interaction etc.

The core idea of this research is to construct an explicit boundary separating al-

lowable and unallowable behaviors, based on classification information of responses

instead of their actual values. As a result, the proposed method is naturally suited

to handle discontinuities and binary states. A machine learning technique referred

to as support vector machines (SVMs) is used to construct the explicit boundaries.

SVM boundaries can be highly nonlinear, which allows one to use a single SVM for

representing multiple failure modes.

One of the major concerns in the design and uncertainty quantification com-

munities is to reduce computational costs. To address this issue, several adaptive

sampling methods have been developed as part of this dissertation. Specific

sampling methods have been developed for reliability assessment, deterministic

optimization, and reliability-based design optimization. Adaptive sampling allows

the construction of accurate SVMs with limited samples. However, like any

approximation method, construction of SVM is subject to errors. A new method

to quantify the prediction error of SVMs, based on probabilistic support vector
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machines (PSVMs) is also developed. It is used to provide a relatively conservative

probability of failure to mitigate some of the adverse effects of an inaccurate SVM.

In the context of reliability assessment, the proposed method is presented for

uncertainties represented by random variables as well as spatially varying random

fields.

In order to validate the developed methods, analytical problems with known so-

lutions are used. In addition, the approach is applied to some application problems,

such as structural impact and tolerance optimization, to demonstrate its strengths

in the context of discontinuous responses and multiple failure modes.
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CHAPTER 1

INTRODUCTION

Optimization and uncertainty quantification, the main subjects of this disser-

tation, are of great importance while designing engineering systems. Design

optimization refers to the process of selecting the best design alternative among

various possible configurations. The definition of “best” alternative is subject to

the designer’s specifications. For example, it may refer to the lowest cost with

certain minimum performance or high system performance with specified maximum

cost. It is naturally desirable to have the best design alternative, which is why

optimization is essential for any system. However, it is not sufficient to merely

provide the best design alternative without considering the effect of uncertainties

on its performance. Optimization is intended to minimize the amount of required

resources while achieving certain performance from the system. This implies that

the optimum design often lies at the boundary of the allowable design space,

with a system performance equal to the limiting value. Therefore, even a slight

variation of the design or the loading conditions can lead to unacceptable system

performance or failure. As a result, such a design is not reliable and such behavior

is highly undesirable. Safety factors are used traditionally to prevent failure.

They are however chosen arbitrarily, and may not be sufficient or may lead to an

overconservative design. To avoid such scenario, it is important to analyze the

sensitivity of the design to uncertainties. The process of quantifying the reliability

of a system, subject to uncertainties, is referred to as reliability assessment.

The process of performing design optimization, while maintaining certain tar-

get level of reliability, is referred to as reliability-based design optimization (RBDO).

While the importance of optimization and reliability assessment is well under-

stood, it may not always be straightforward to implement these for complex systems.
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Especially, optimization under uncertainties can be quite involved, and is prohibitive

in many cases. For complex engineering systems, the relation between system re-

sponses (e.g. stress, displacement etc.) and design/loading parameters (e.g. load,

Young’s Modulus etc.) is seldom available explicitly. For example, it is not possible

to express the response of a vehicle subjected to impact in the form of analytical

equations. In the absence of an explicit relationship, the most brute force optimiza-

tion method is to generate a very large number of samples (design configurations)

and pick the best solution after evaluating each sample. Similarly the most basic

reliability assessment technique is Monte Carlo Simulation (MCS) (Metropolis and

Ulam (1949); Melchers, R.E. (1999)), which also requires the generation of a very

large number of random samples that follow some probability density function. Sup-

pose the system under consideration is a vehicle subjected to impact; it is definitely

not possible to perform a large number of crash tests on actual vehicles. The cost

of such a procedure will be extremely high. To avoid tests on actual expensive

systems, computer simulations have become popular in many fields. However, they

can also involve high cost in the form of resource allocation and computation time.

For example, let us consider a finite element model of a vehicle subjected to impact

that takes 2 hours per simulation (in general it may be much more). Let us consider

seven variables for optimization. To study the effect of each variable, let us consider

5 values per variable. The total number of design configurations will be 57 and the

total computation time will be 2× 57 hours, which is almost 18 years. If the proba-

bility of failure is calculated for each design configuration then the total time will be

many times more. Such methods are definitely not practical. Therefore, the main

focus of the design optimization and uncertainty quantification community is to de-

velop efficient and accurate optimization and reliability assessment methods. This

is also the subject of this dissertation. Some of the challenges that need resolution

are:

• Computation cost per simulation may be high, thus restricting the number of

samples.



20

• Boundary of allowable design space (limit state function or constraint) may

be highly nonlinear, and difficult to approximate accurately with limited data.

• Responses can be non-smooth and discontinuous (Missoum, S. et al. (2007)).

• Only binary pass or fail information may be available (Layman, R. et al.

(2010)).

• A system may be subject to multiple failure modes, making the process of

identifying the failure domain more challenging (Arenbeck, H. et al. (2010)).

Several optimization and reliability assessment methods can be found in the

literature. However, no single method presents a solution to all the aforementioned

issues faced together.

Optimization methods can be of different types, such as heuristic methods

or gradient-based methods. Several types of methods have been developed in

each category. The heuristic methods, such as genetic algorithms (GAs), pattern

search etc. (Weise (2009); Goldberg (1989); Audet et al. (2000)) are usually zero

order methods that require only function values at the samples. Such methods

are suitable for non-smooth and discontinuous responses. However, these methods

can often require a large number of samples to find the optimum. Therefore, the

associated cost is very high if the evaluation of system responses is expensive.

Gradient-based methods (Vanderplaats (1984)) also use first order and sometimes

second order information in addition to function values. The use of gradient

information helps in expediting the optimization. However, these methods are

only applicable to problems that have gradient information. If only zero order

information is available then a large number of samples may be used to calculate the

gradients using finite differences. Another limitation of gradient-based methods is

that they are hampered by discontinuous responses, as the gradient is not defined at

the discontinuities. Also, gradient based methods are usually limited to local optima.
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In the context of reliability assessment also, several methods can be found in

the literature. The simplest of the reliability assessment methods is the mean

value method (Cornell (1969)) that calculates the probability of failure based

on zero and first order information of the response at the mean configuration.

First and second order reliability methods (FORM and SORM) (Haldar, A. and

Mahadevan, S. (2000)) involve a search for “most probable point” for failure in

the standard normal space. These methods are effective if the limit state function

(boundary of the failure domain) is linear or quadratic in the standard normal

space; however their accuracy in the general case is not reliable. Other methods,

such as advanced mean value method (AMV) (Wu et al. (1990)) and two point

nonlinear approximation (TANA) (Wang and Grandhi (1995)) have also been

developed to treat nonlinear limit states. However, these methods can also lead

to considerable errors in the case of complex multimodal limit state functions, as

shown in Bichon, B.J. et al. (2007). Apart from the reliability assessment method,

another source of error may lie in the quantification of uncertainties itself. Two

types of representations are commonly used - random variables and random fields.

For a problem with spatial variability (e.g., sheet metal thickness distribution),

uncertainties should be represented with random fields as they provide a more

realistic representation. However, literature dealing with random fields is relatively

limited, and revolves around stochastic finite elements (SFE) (Ghanem and Spanos

(2003); Stefanou (2009)). One of the major issues with SFE is that most methods

are intrusive, and their implementation is, therefore, complicated. Non-intrusive

SFE methods have also been developed (Ghiocel and Ghanem (2002); Berveiller

et al. (2006); Huang et al. (2007)). However, one of the limitations of major-

ity of these works lies in the assumption of a prior distribution for the random fields.

In all the optimization and reliability assessment methods, there is a compromise

between the computation cost and their accuracy in the general case. A common

approach to reduce computation costs is to replace the actual responses using a

surrogate model, such as a response surface (Downing et al. (1985); Myers, R.H.
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and Montgomery, D.C. (2002)) or metamodel (Wang and Shan (2007); Simpson,

T. W. et al. (2008)). A surrogate model provides an approximation of the actual

responses, and can be evaluated with a much lower (almost negligible compared to

an actual evaluation) computation cost. However, in order to provide an accurate

approximation of the responses, a surrogate needs to be “trained” first. This

is achieved by first studying the actual system responses at specific samples or

configurations in the space. The selection of samples themselves is a broad research

area, referred to as design of experiments (DOE) (Montgomery, D.C. (2005);

Kleijnen,J.P.C. et al. (2005); Liefvendahl, M. and Stocki, R. (2006); Kleijnen,J.P.C.

(2008)). In classical DOE methods (Montgomery, D.C. (2005)), samples were

selected based on an initial assumption about the nature of response approximation

(e.g. second order polynomial). More recently, space filling designs and adaptive

designs have gained prominence for design of computer experiments (Fang et al.

(2006); Kleijnen,J.P.C. et al. (2005); Kleijnen,J.P.C. (2008)). Once the samples are

selected, the surrogate is trained based on the response values at these samples.

There are several choices for surrogate models that can be used. More details about

different DOEs and surrogates are presented in Chapter 2. Once a surrogate model

is trained, several different methods can be applied for optimization and reliability

assessment. Several surrogate-based adaptive sampling techniques, specifically

directed at optimization (Jones, D.R. et al. (1998)), reliability assessment (Wang,

G.G. et al. (2005); Bichon, B.J. et al. (2007)) and RBDO (Bichon, B.J. et al.

(2009)) have also been developed to accurately approximate nonlinear responses

with limited samples. However, these methods also face problems when all the

aforementioned issues are present together, especially discontinuous and binary

responses, and multiple failure modes.
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1.1 Motivation of present work

As mentioned in previous section, current optimization and reliability assessment

techniques are faced with several challenges that limit their application. The main

objective of this dissertation is to develop a general method that addresses these

difficulties simultaneously. The work was originally motivated by the need to handle

problems with discontinuous responses and highly nonlinear failure boundaries,

as no current technique presents an efficient solution to such problems (Missoum,

S. et al. (2007); Basudhar, A. et al. (2008)). In this research, such problems

are handled by introducing a conceptual shift in the treatment of reliability

assessment and constrained optimization problems. Unlike other methods, the

proposed sampling-based method referred to as explicit design space decomposition

(EDSD) does not require response values at the samples. It only requires binary

classification of the samples, i.e. whether a sample is allowable or not. Unlike

response approximation methods, only the zero-level contour of the responses is

approximated (as opposed to the entire response distribution), which represents

the decision boundary (i.e. optimization constraints or failure domain boundary).

It is essential to understand this subtle difference, as it is the root cause of several

advantages of the proposed method.

While presence of response discontinuities hampers traditional methods, the

classification-based EDSD approach greatly simplifies the problem, as it does not

require response values. The proposed method, therefore, remains unchanged for

discontinuous problems. In the original EDSD method (Missoum et al. (2004); Mis-

soum, S. et al. (2007)), decision boundaries were approximated using hyperplanes,

ellipsoids and convex hulls. However, these methods could not be used for highly

nonlinear and nonconvex decision boundaries. Therefore, the use of a machine

learning technique referred to as support vector machines (SVMs) (Vapnik, V.N.

(1998); Shawe-Taylor, J. and Cristianini, N. (2004); Gunn, S.R. (1998)) is proposed

in this dissertation to approximate the boundaries. An SVM boundary can be
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highly nonlinear, and can also correspond to multiple constraints or failure modes.

Thus, the proposed method also provides a natural way to handle multiple failure

modes using a single SVM (Arenbeck, H. et al. (2010)). One of the key issues in

reliability assessment and optimization is to limit the computation cost. Therefore,

in order to construct accurate SVMs with limited number of samples, several

adaptive sampling techniques have also been developed as part of this dissertation.

1.2 Scope of work

The scope of this dissertation is the development of the SVM-based EDSD method,

for use in reliability assessment, and deterministic or probabilistic optimization

(Basudhar, A. et al. (2008)). The motivations for developing this new classification-

based technique were discussed in Section 1.1. A major part of the dissertation

is dedicated to adaptive sampling techniques. Specific adaptive schemes have

been developed for probability of failure calculation, deterministic optimization

and RBDO (Basudhar, A. and Missoum, S. (2008, 2010b, 2009a, 2010a)). It

is understood that the accuracy of any sampling-based method depends on the

quality of the samples, and it is, therefore, important to consider the possibility

of errors. Therefore, probability of misclassification due to an incorrect SVM

approximation is also considered in this research (Basudhar, A. and Missoum, S.

(2010c)). This is performed using a probabilistic support vector machine (PSVM)

(Vapnik, V.N. (1998); Wahba, G. (1999); Platt, J.C. (1999)). However, the current

PSVM models do not take the spatial distribution of samples into account, resulting

in non-intuitive misclassification probabilities at the evaluated samples. Therefore,

an improved PSVM model is also developed in this work that accounts for such

factors (Basudhar, A. and Missoum, S. (2010a)).

In terms of quantification of uncertainties, both random variable and random

field representations are used in this work (Basudhar, A. and Missoum, S. (2009b)).
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In the case of random fields, proper orthogonal decomposition (POD) (Liang,Y. C.

et al. (2002)) is used to convert the problem into an equivalent random variable

problem.

In order to demonstrate the efficacy of the developed methods, several analytical

examples with known solutions are used. In addition, application of the approach

to solve problems with discontinuous responses and multiple failure modes is also

demonstrated. The methods are applied to linear and nonlinear buckling problems,

structural impact problems, and tolerance optimization.

Organization of this dissertation is as follows. Chapter 2 presents a review of the

literature in the fields of reliability assessment, optimization and RBDO. Chapter

3 provides an introduction to SVMs and PSVMs. In Chapter 4, an introduction to

the basic notion of EDSD using SVMs is provided, along with an adaptive sampling

to globally refine the SVM boundaries. Examples are presented to demonstrate

the accuracy of the update and the application of EDSD to reliability assessment.

To enhance the scalability of the approach, an RBDO method using locally refined

SVMs is presented in Chapter 5. The RBDO method uses a specific update strategy

for calculation of failure probabilities, which is also explained in the same chapter.

In Chapter 6, a modified PSVM model developed in this work is presented. The

model is used to calculate the probability of misclassification by SVM. This measure

of uncertainty in SVM classification is then used to provide a relatively conservative

PSVM-based probability of failure that compensates the errors in SVM prediction.

Chapter 7 presents a method to perform constrained efficient global optimization

using locally refined SVM constraints. The PSVM model introduced in Chapter 6

is used to guide the sample selection for optimization. In Chapter 8, the EDSD

method, presented for random variables in earlier chapters, is extended to relia-

bility assessment using random fields. Chapters 4-8 are supported with results of

analytical examples with known solutions. In addition, some application problems

are presented to demonstrate the usefulness of the methodologies developed in this
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research. Finally, in Chapter 9, a summary of the contributions of this dissertation

is presented along with a discussion on future scope for research in the field.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents the necessary background to various concepts that are part

of this research, as well as a review of the literature. First, the basic concepts

of design optimization and reliability assessment are presented. These are are

followed by an introduction to the state of the art designs of experiments (DOE)

that allow one to perform a study of system responses with respect to design

and random variables. A DOE allows one to study system responses at discrete

samples. Very often, these responses are used to construct a surrogate model that

approximates the actual system responses. As mentioned in Chapter 1, use of

surrogates is quite popular for the reduction of computation cost. A surrogate

model provides an approximation of the responses that can be used to replace

the actual function while performing optimization or reliability assessment. A

review of various surrogate models is presented in Section 2.4. However, ap-

proximation of responses has its limitations that were the major motivation for

the development of classification-based methods, which encompass the research

performed in this dissertation. An introduction to classification-based methods

is presented in Section 2.5. Finally, a detailed review of various reliability as-

sessment, optimization and RBDO methods is presented in Sections 2.7, 2.6 and 2.8.

2.1 Design optimization

As already stated in Chapter 1, optimization is important in all fields of engineering.

Design optimization refers to the process of enhancing system performance with

minimal resources, i.e. to select the best design alternative. It is, therefore, naturally
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desirable. In general, an optimization problem is defined as:

min
x

f(x)

s.t. g(x) ≤ 0

h(x) = 0

xmin ≤ x ≤ xmax (2.1)

where f(x) is an objective function that need to be minimized. g(x) is a vector of

inequality constraints and h(x) is a vector of equality constraints. In this disserta-

tion, the emphasis is on inequality constraints. The process of optimization can be

illustrated with an example. Let us consider a two bar truss structure subjected to

a point load F , with the area of cross-section A being a design variable (Figure 2.1).

F

Figure 2.1: Two bar truss subjected to point load.

A design configuration (value of A) is considered allowable or feasible if it does

not lead to buckling when subjected to the design load F . Any configuration that

leads to buckling is unacceptable. Naturally, a configuration with lower cross-

sectional area is more likely to buckle. Suppose the lowest area that does not

lead to buckling is A∗. The feasible and infeasible domains of the one-dimensional

design space are depicted in Figure 2.2. If the objective function function f(A) is

the weight of the structure then the optimum design will be the one with lowest

area that does not lead to buckling, i.e. A∗ (Figure 2.3).



29

feasible domain

(no buckling)

infeasible domain

(buckling at design load)

Figure 2.2: One dimensional feasible domain for two bar truss.

F F F
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structure
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Figure 2.3: Optimal design of two bar truss.

In general, the relations between variables (x) and system responses

(f(x),g(x),h(x)) are not available explicitly. Therefore, finding the optimal so-

lution may not be straightforward, especially when function evaluations are expen-

sive. Additional difficulties may be encountered in the form of highly nonlinear

system equations, response discontinuities etc. A review of optimization methods is

provided in Section 2.6.

2.2 Reliability assessment

This section presents an introduction to the concept of reliability in design. The

importance of reliability considerations for engineering systems is well known. A

very small variation in the design or loading parameters can sometimes lead to

failure. This can be illustrated with the help of the two bar truss example considered

in Section 2.1. The load-displacement curve of the structure is shown in Figure

2.4. The left figure shows the point on the curve that corresponds to the optimal

design subjected to the design load F . The figure on the right shows the effect of

uncertainties on the displacement. Even a slight variation of the applied load can
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lead to buckling of the structure.

F

*AA

deformed structure

*AA

deformed 

structure

F

u1 u1

F

u2

FF

Figure 2.4: Effect of a small load variation on a two bar truss.

Clearly, the two bar truss structure displays high sensitivity to uncertainties.

If the effect of uncertainties is not considered, then the resulting design will be

extremely unsafe. Therefore, in general, it is imperative to account for uncertainties

in loading and design variables.

There are several ways to quantify the reliability of a system. It can be repre-

sented in a deterministic way using a response value and a safety factor/margin or a

stochastic way using a probability of failure or reliability index (Elishakoff (2004)).

The conventional method is to specify a factor or margin of safety. Factor of safety

is defined as:

SF =
R

S
(2.2)

Safety margin is defined as:

SM = R− S (2.3)

where R is the system resistance, e.g. yield strength, and S is the load applied to the

system. A major limitation of above deterministic representations is that they do

not provide a clear insight into the chances of failure or the factors affecting system
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responses. Also, designs based on safety factors can often be over-conservative

(Elishakoff (2004)). A much more widely accepted measure is the probability of

failure. This involves consideration of R and S as random quantities with certain

distribution (Figure 2.5). Failure occurs if S exceeds R (shaded region in Figure

2.5). Therefore, probability of failure Pf is:

Pf = P (R− S ≤ 0) = P (z ≤ 0) (2.4)

where z = R − S is the limit state function or the performance function. z = 0

represents the failure domain boundary.

x


)( SRPP
f



S of PDF

R of PDF

Figure 2.5: Probability of failure calculated as the probability of load S being greater
than resistance R.

If the uncertainties in the system are represented using a vector of random vari-

ables x then the probability of failure can be expressed as:

Pf = P (g(x) ≤ 0) =

∫

Ωf

fX(x)dx (2.5)

where fX(x) is the joint probability density function of random variables x1 up to xm

and Ωf is the failure domain defined by the limit state function g(x). By convention,

the limit state function g(x) is negative in failure region. The probability of failure

is calculated as probability of x lying in the failure region (Figure 2.6). Unlike

the safety factor and margin measures, probability of failure provides more insight
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about the likeliness of failure. Systems can be designed based on specific target

probabilities.

x

0xx 

)( failure 0xx 

)( 0xxPPf )(xfX

Figure 2.6: Failure probability due to uncertainty in random variable x.

The calculation of failure probability using Equation 2.5 is not always straight-

forward as the distribution of g(x) or the boundary of failure domain Ωf are

not known explicitly. Very often, the only information available is the value of

responses at discrete samples. Therefore, approximations are required to calculate

the integral in Equation 2.5. The calculation of failure probability is especially

challenging when the evaluation of samples is expensive. Therefore, the goal of

most reliability assessment methods is to evaluate probabilities of failure with

limited samples. A review of reliability assessment methods is presented in Section

2.7.

Similar to optimization, in the context of reliability assessment also, it is

possible to replace the actual function with a surrogate to reduce computation

cost. Surrogate models are constructed by studying the responses using a design

of experiments (DOE). A review of DOEs and surrogate modeling is provided in

following sections.
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2.3 Design of experiments (DOE)

This section presents an introduction to designs of experiments (DOEs) (Mont-

gomery, D.C. (2005); Kleijnen,J.P.C. et al. (2005); Kleijnen,J.P.C. (2008)), which

allow one to study system responses based on a set of discrete samples. The method

of selecting the samples is referred to as a design of experiments. Several types of

DOEs exist with varying criteria for the selection of samples. The ultimate goal of

a good DOE is to maximize the available information with limited samples.

The most basic and intuitive design of experiment is a full factorial design,

in which each variable is divided into specified number of levels. Each possible

combination of the variables is then treated as a sample. An example of a two

variable full factorial design, with 3 levels per variable, is shown in Figure 2.7.

Figure 2.7: Full factorial design with 2 variables and 3 levels.

Although a full factorial design allows an exhaustive study with respect to to

all the combinations of the different variable levels, the number of levels that can

be used is limited. The method is not scalable to high dimensions because the

number of samples will be very high. Fractional factorial designs address the issue

to certain extent; however, these also require set levels for each variable.
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In the context of response surfaces, non-factorial designs, such as central com-

posite design ((Montgomery, D.C. (2005))) are useful. An example of CCD is shown

in Figure 2.8. It consists of a center point, 2m corner points and 2m axial points,

m being the dimensionality. CCD allows the calculation of curvatures without eval-

uating a three level full factorial design, and is especially suited for second order

approximation.

axial points
corner points

center point

Figure 2.8: Center composite design with three variables.

More recent methods include space filling design, such as Latin Hypercube

Sampling (LHS) (Butler, A. N. (2001)) and more uniform designs, such as Im-

proved Distributed Hypercube Sampling (IHS) (Beachkofski, B.K. and Grandhi, R.

(2002)), Optimal Latin Hypercube Sampling (OLHS) (Liefvendahl, M. and Stocki,

R. (2006)), Centroidal Voronoi Tessellations (CVT) ) (Romero, Vincente J. et al.

(2006)) etc. Low discrepancy sequences such as Halton, Hammersely and Sobol are

also used. An example of LHS is shown in Figure 2.9. The basic idea is that no

two samples can have the same value or level for a particular variable. Thus it

requires much fewer samples compared to factorial designs, and are more scalable.

The number of samples is equal to the number of levels per variable.
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1
x

2
x

Figure 2.9: Latin hypercube sampling with two variables and five levels.

Although “latinization” of the samples has its benefits, there are several

possibilities to construct an LHS. Some of these designs may not have uniform

distribution of samples. The goal of OLHS is to provide an optimal LHS based

on certain criterion. The criterion may be based on maximum minimum distance

or minimum “potential energy” (Liefvendahl, M. and Stocki, R. (2006)). These

criteria allow for a more uniform distribution of the samples.

Centroidal Voronoi Tessellations (CVT) also provide uniform sampling of the

space. In CVT samples are placed such that they lie at the centroids of the respective

Voronoi cells. The Voronoi cell corresponding to a sample is defined as the region

where this sample is the closest one to any point within the cell. A uniform sample

distribution is obtained when the samples coincide with the cell centroids. An

example of CVT is shown in Figure 2.10. Although CVT gives a uniform sample

distribution, it has limitations in high dimensions. In a high dimensional hypercube

encompassing the DOE, most of the volume is contained in the corners. It may

be useful to sample within a hypersphere, especially in the context of reliability
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assessment Jiang, P. et al. (2011).

Figure 2.10: Centroidal Voronoi Tessellations with two variables and ten samples.
Samples are represented by the black circles, and the corresponding Voronoi cells
are shown in different colors.

2.4 Response approximation using surrogate models

In the context of expensive function evaluations, the focus of this dissertation,

there are limitations on the number of function calls. In order to reduce function

evaluation cost, the actual response is often replaced by a surrogate model, such

as a response surface (Downing et al. (1985); Myers, R.H. and Montgomery,

D.C. (2002)) or metamodel (Wang and Shan (2007); Simpson, T. W. et al.

(2008)). Followed by the construction of a surrogate model with relatively few

samples, the response at any sample can be evaluated using the approximated model.
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2.4.1 Basic response approximation methodology

The basic steps for construction of a surrogate model are presented in this section.

Once the surrogate is constructed, an approximation of the response function is

obtained. Therefore, calculation of response at any sample is straightforward using

the approximated function. The actual function can be replaced with the surrogate

for performing optimization or reliability assessment. The key steps are:

• Design of Experiments (DOE): First, the space is sampled using a speci-

fied number samples or configurations. These samples are selected using a

DOE (Montgomery, D.C. (2005); Kleijnen,J.P.C. et al. (2005); Kleijnen,J.P.C.

(2008)).

• Response Evaluation at DOE samples: For each sample in the DOE, the sys-

tem response is obtained using the actual function evaluator (e.g. finite ele-

ment analysis (FEA) code). In the context of engineering applications, each

function evaluation may be quite expensive, e.g. for crash analysis or fluid-

structure interaction problems.

• Choice of a surrogate model and calculation of unknown coefficients of the

model: There are several choices for a surrogate model (Section 2.4.3). Any

model consists of a particular basis and a set of coefficients that need to be

determined. These coefficients are determined using the information at DOE

samples. Substitution of evaluated response at each sample into the expres-

sion for approximated function (e.g. Equations 2.8,2.9,2.12,2.14) provides an

equation. This information is used to calculate the unknown coefficients. Dif-

ferent techniques exist to calculate the coefficients, depending on the type of

surrogate (Section 2.4.2).

• Prediction of unknown responses: Once the coefficients are calculated, an ap-

proximation of the response function is obtained. Therefore, calculation of

response at any sample is straightforward using the approximated function.
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The surrogate model can then be used to replace the actual function while

performing optimization or reliability assessment.

2.4.2 Calculation of surrogate model coefficients for response approximation

Any surrogate model consists of a basis and a set of unknown coefficients that need

to be determined. There are various methods to determine the coefficients. Some

of the methods are listed below.

• Solution of a system of linear equations. This method is used when the DOE

is saturated, i.e. the number of samples is exactly same as the number of

unknown coefficients in the model. Response evaluation at each sample gives

an equation, and the system of equations using all samples is solved.

• Least square and moving least square. Determining the coefficients by solving

a system of equations may lead to overfitting. A commonly used approach for

finding the coefficients is to minimize the sum of square errors at the samples.

The square error is:

ε2 =
N∑

j=1

(
f̂(xj)− f(xj)

)2

(2.6)

where f(x) is the actual function and f̂(x) is the approximated one. The least

square method gives equal weights to all the samples. Another approach is to

give varying weights to the samples. In moving least square method, varying

weights are given to the samples, with the weights depending on the distance

to the point at which response is required. The moving least square is:

ε2 =
N∑

j=1

(
f̂(xj)− f(xj)

)2

w (x− xj) (2.7)

where x is the point at which response is required. The weight w is higher for

samples that are closer to x.

• Maximum likelihood approximation. Maximum likelihood method is used for

determining the coefficients in the context of probabilistic approaches, such as
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Kriging. It is based on maximizing a known likelihood function expressed in

terms of the surrogate model coefficients. Knowing the response outcomes at

the samples, the likelihood of having a set of coefficients is defined. The likeli-

hood is a function of the coefficient values. The maximum likelihood method

is illustrated in the following section in the context of a Kriging surrogate.

2.4.3 Types of surrogate models

Several types of surrogate models can be found in the literature. A review of some

of the common methods is provided in this section.

Polynomial response surface

The most basic method of approximating responses is to fit a polynomial response

surface (Box and Wilson (1951)) to the function values:

f̂(x) = α0 + α1x1 + . . .+ αmxm + αm+1x
2
1 + . . .+ α2mx

2
m + . . . (2.8)

where αi are unknown polynomial coefficients that are solved to obtain the

approximation. Depending on the DOE used, the polynomial coefficients can be

determined by solving a system of linear equations or based on a least square or

moving least square type criterion. The use of second order polynomial response

surface was first proposed in Box and Wilson (1951). A second order polynomial

allows the calculation of first and second derivatives, and therefore, can be used to

find the minima or maxima for optimization. However, in most situations, a second

order approximation is not adequate as the relation between design variables and

system responses may be highly nonlinear. Higher order polynomials may also be

used, but they require more samples. Also the approximation is highly dependent

on the degree of the polynomial.
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Radial basis functions

A more flexible model to approximate responses consists of using radial basis func-

tions instead of polynomials (Powell (1987)). Radial basis function is a function for

which the value depends on the distance from the center. The nature of approxi-

mation depends on the number of basis centers used. The method of finding the

coefficients for an RBF approximation depends on the number of basis centers. If

all samples are used as basis centers then function values are interpolated, i.e., the

approximation passes through the evaluated function value at each sample:

f̂(x) =
N∑

i=1

αiψi(||x− xi||) (2.9)

where ψi(x − xi) is a radial basis function, αi is the coefficient or weight for ith

basis function, and N is the number of samples. The RBF can have several forms,

such as Gaussian, multiquadratic etc. For instance, Gaussian RBF is defined as

exp(− ||x−xi||2
2σ2 ). In Equation 2.9, there are N unknowns (αi). N equations are

obtained using function values at the samples:

f̂(xj) =
N∑

i=1

αiψi(||xj − xi||) j = 1, 2, . . . , N (2.10)

This leads to a system of equations with N unknowns and N equations. The coef-

ficients αi are obtained as:

α = Ψ−1f (2.11)

where α is the vector of unknown coefficients, f is the vector of function values at

the samples, and Ψ is the matrix of radial basis functions calculated at the samples.

If all samples are used to calculate the RBF weights, it may lead to overfitting.

This may cause problem if there is noise in the data. It is possible to train RBFs

in a least square sense. In this case, only a subset n of the samples is used as basis

centers. The approximation is given as:

f̂(xj) =
n∑

i=1

αiψi(||xj − xi||) j = 1, 2, . . . , N (2.12)
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The weights are calculated such that they minimize the sum of square errors ε2 at

the samples:

ε2 =
N∑

j=1

(
f̂(xj)− f(xj)

)2

=
N∑

j=1

(
n∑

i=1

αiψi(||xj − xi||)− f(xj)

)2

(2.13)

Kriging

Another popular method for response approximation is Kriging, which models sys-

tem response as a random process:

f̂(x) = h(x)Tβ + Z(x) (2.14)

where h is the trend of the model, β is the vector of trend coefficients, and Z is a

stationary Gaussian process based on correlation between samples. The covariance

between any two samples a and b is defined as:

cov[Z(a), Z(b)] = σ2
ZR(a,b) (2.15)

where σ2
Z is the variance of the process Z and R is the correlation function:

R(a,b) = e−
∑m
j=1 θj |aj−bj |

pj
(2.16)

where θj is the scale parameter for the jth dimension and the parameter pj deter-

mines the smoothness of the correlation function and is set equal 2 for Gaussian

correlation.

In ordinary Kriging the regression terms in Equation 2.14 are replaced by an

unknown constant trend. It has been reported in literature that the correlation

term itself is powerful enough to provide an approximation of the responses. The

response at any point x is:

f̂(x) = µ+ Z(x) (2.17)
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It should be noted that µ is an unknown that depends on the correlation between x

and the evaluated samples, and needs to be solved. The total number of unknowns

is 2m + 2. For each of the m variables, θj and pj are unknown. In addition, µ

and σZ are also unknown. The unknowns in Kriging are are solved using maximum

likelihood constructed based on the known actual function values and correlations

for N evaluated samples. Because the model is considered as a correlated Gaussian

process, the likelihood function is given as:

L(µ, σZ ,θ,p) =
1

(2π)
N
2 (σ2

Z)
N
2 |R| 12

exp

[
−(f − 1µ)′R−1(f − 1µ)

2σ2
Z

]
(2.18)

where f is the vector of actual function value at N evaluated samples and R is a

N ×N matrix containing the correlation function values between each sample pair.

It should be noted that the likelihood function is given by the multivariate normal

distribution, expressed as a function of the unknown distribution parameters. The

values of µ and σZ that maximize the likelihood function can be obtained by simple

differentiation, in terms of the other unknowns. These are given as:

µ̂ =
1′R−1f

1′R−11
(2.19)

σ̂Z
2 =

(f − 1µ̂)′R−1(f − 1µ̂)

N
(2.20)

Substituting the results from Equations 2.19 and 2.20 into Equation 2.18 provides

the likelihood function as a function of the other 2m unknowns. These unknowns

are determined using optimization, by maximizing the likelihood function. Similar

to RBFs, Kriging has the ability to approximate highly nonlinear responses provided

sufficient training data is present. In addition it provides a measure of estimation

error by the surrogate. The mean Kriging prediction at a sample x is (Jones, D.R.

et al. (1998)):

f̂(x) = µ̂+ r′R−1(f − 1µ̂) (2.21)

where r is a vector containing the correlation function values between x and the N

training samples. The mean square error or variance of the Kriging prediction is
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(Jones, D.R. et al. (1998)):

s2(x) = σ2
Z

[
1− r′R−1r +

(1− 1′R−1r)2

1′R−11

]
(2.22)

2.5 Response classification methods

The basic notions of design optimization and reliability assessment were presented

in Sections 2.1 and 2.2. It was stated that the constraint functions and limit state

function g(x) are not known explicitly in general, and surrogate models are often

used to approximate the function. However, it is interesting to note that in both

optimization and reliability assessment, it is not actually the function g(x) that is

required. Only the zero-level contour of the function, g(x) = 0, is required to define

the decision boundaries. This is the central idea of classification-based methods

presented in this section, and also of this dissertation. An approximation is built

for the zero-level contour g(x) = 0, which is then used to replace the actual decision

boundary. Similar to response approximation methods, the system responses are

first studied with discrete samples from a DOE. However, instead of fitting the

responses, the samples are classified as allowable or not. An explicit boundary

is then constructed that separates the two classes of samples. Optimization and

reliability assessment can then be performed using the approximated classification

boundary. A comparison of response approximation and classification methods is

shown in Figure 2.11.

The first attempt to classify the space into safe and failure regions was made in

(Missoum et al. (2004)). Hyperplanes and ellipsoids were used to approximate the

failure domain. An improved version of the method was developed using convex hulls

(Missoum, S. et al. (2007)). However, all these methods were limited to decision

boundaries that represent convex domains. This limitation has been overcome in

this dissertation by using Support Vector Machines (SVMs) (Vapnik, V.N. (1998);

Gunn, S.R. (1998)) for decision boundary approximation. A comparison of the

classification methods is shown in Figure 2.12.
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approximation approximation of zero-level

contour of response (classification)

)(ˆ xg

0)(ˆ xg

Figure 2.11: Comparison of response approximation and classification methods.

failed 

samples

safe 

samples

Classification Using Hyperplanes Convex Hull Classification SVM Classification

misclassified misclassified

Figure 2.12: Classification using hyperplanes, convex hull and SVM. Among the
three methods, only SVM is able to classify all samples correctly due to non-convex
nature of the limit state function.

The use of SVMs in the context of reliability assessment was also independently

proposed in Hurtado, Jorge E. (2004). In this dissertation, SVMs are used for

reliability assessment as well as deterministic and probabilistic optimization, as

explained in Chapter 5 and Chapter 7. Contribution of this dissertation also

includes the development of several adaptive sampling techniques to refine SVM

boundaries. A new method to quantify the prediction error of SVMs (Chapter 6) is

also developed, which is used to provide relatively conservative failure probabilities
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compared to a deterministic SVM.

2.6 Deterministic optimization methods

An introduction to the necessity of optimization and some of the difficulties

encountered was provided in Section 2.1. This section provides a review of some of

the optimization methods.

2.6.1 Gradient-based methods

Gradient-based methods are a category of optimization techniques that use the

derivatives of responses for determining the search path. They are derived from the

basic principles of Calculus. The most basic method is steepest descent method.

It is known that value of a function reduces in a direction for which gradient is

negative. The steepest descent method aims at finding the optimum by iteratively

searching the direction with lowest gradient:

x(k) = x(k−1) − α∇f(x(k)) (2.23)

where ∇f(x(k)) is the search direction and α is a scalar that is adjusted to find

minimum f(x) in this direction. For constrained optimization, the objective func-

tion f(x) in Equation 2.23 is replaced by a penalized merit function (Vanderplaats

(1984)). More advanced methods exist, such as sequential linear programming

(SLP) and sequential quadratic programming (SQP) (Boggs and Tolle (1995);

Vanderplaats (1984)). In these methods, a series of linear or quadratic programming

subproblems are solved to find the final solution.

In SLP, both the objective function and the constraints are linearized at the

current iterate using Taylor series expansion. The next iterate is constrained to lie

within the move limits of each variable, within which the linear approximation is
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considered valid. The optimization subproblem is:

min
x

f(xk) +∇f(xk)
T (x− xk)

s.t. gj(xk) +∇gj(xk)T (x− xk) ≤ 0

x
(l)
i ≤ xi − xki ≤ x

(u)
i (2.24)

where xk is the current iterate, gj is the jth inequality constraint, and x
(l)
i and x

(u)
i

are the lower and upper move limits for the ith variable.

In SQP, the optimization subproblem to find the search direction s consists of a

quadratic objective function and linear constraints:

min
s

f(xk) +∇f(xk)
T s +

1

2
sTHs

s.t. gj(xk) +∇gj(xk)T s ≤ 0 (2.25)

where H is the Hessian matrix. If the Hessian is not available directly, it may require

several function evaluations to determine it. To avoid that, an initial approximation

of H is updated iteratively usually (Vanderplaats (1984)). Determination of the

search direction is followed by a line search along that direction.

Any gradient-based method is prone to certain limitations:

• Gradient based methods often converge to local minima. Multiple starting

points may be used to overcome this issue, but it increases the computation

cost.

• Gradient-based methods are hampered by discontinuous and non-differentiable

responses.

2.6.2 Heuristic methods

Unlike gradient-based methods, these methods are based on heuristics rather

than solely the mathematical foundation of Calculus. Several types of algorithms
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have been developed, which try to balance exploration (of the whole space) and

exploitation (of a local region in space expected to contain optimum) in a specific

manner. Some of the popular heuristic methods are generalized pattern search,

Genetic Algorithms, Simulated Anealing (SA), and Particle Swarm Optimization

(PSO) (Weise (2009)).

Generalized pattern search (GPS) methods (Audet et al. (2000)) are derived

from coordinate search methods, and involve the definition of a positive spanning

set of search directions. In other words, a positive linear combination of the search

directions spans the space. The search in GPS is based on a “global search” step

and a “local poll” step. An initial starting point is perturbed along each search

direction by an initial step size. If a lower objective function is found then the step

size is increased and a global search is started at the new point. Otherwise, the

step size is reduced and a search is started at the previous point. Constraints are

handled using pruning; objective function at infeasible points is set to infinity.

A popular class of heuristic methods are genetic algorithms (GAs) (Goldberg

(1989); Weise (2009)). GAs are evolutionary algorithms that try to simulate evo-

lution of genes in nature. Similar to natural gene evolution, GAs are stochastic

in nature. They start with an initial population of consisting of individuals, each

individual representing a sample in the context of optimization. Next generations

of samples are created using three important operations - selection (among exist-

ing individuals), crossover (between selected samples from current population) and

mutation:

• Selection: The first step in creating the next generation from the current

population is to select individuals for “breeding”. For this purpose, a fitness

function is evaluated for each individual of the current population. The

fitness values are then used to select individuals based on different criteria,

such as tournament selection, roulette wheel selection, ranking methods etc.
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Roulette wheel selection is one of the most intuitive methods. In this method,

a probability of selection is assigned to the individuals, which is directly pro-

portional to the fitness function value. This probability is obtained by dividing

the fitness value of an individual by the sum of all fitness values in the pop-

ulation. The population is first sorted in decreasing order of this probability.

A random number is then generated between 0 and 1. The selected individ-

ual is the first one with an accumulated probability greater than this number.

The accumulated probability is the sum of probabilities for this individual and

all previous individuals in the sorted list. This process is repeated until the

required number of individuals for the next generation are obtained.

• Crossover: In crossover, two parents or individuals from the current pop-

ulation are combined to create children or individuals for the next genera-

tion. There are several methods, such as single point crossover, cut and splice

crossover, uniform crossover etc. Before performing crossover, the individuals

may be converted to their binary codes, i.e. expressed in terms of 0 and 1

(although it is not necessary to do so). For example, the binary code for 5 is

101. An example of single point crossover with binary coding of individuals

is shown in Figure 2.13. In uniform crossover, individual bits of the parents

are compared. They are swapped with a fixed probability. This probability

is a parameter that needs to be defined by the user. A random number is

generated between 0 and 1, and the bits are swapped if this number is less

than the predefined probability value.

100111010100

111010111001
parents

crossover

point

111011010100

100110111001

children

Figure 2.13: Single point crossover of binary coded individuals.



49

• Mutation: Mutation is performed to maintain diversity in the population. A

small probability is provided that the children obtained after crossover may

mutate. This is done so that all individuals in the population are not exactly

the same. There are several methods for mutation, such as flip bit mutation,

uniform mutation, gaussian mutation etc. For example, in flip bit mutation

used in the case of binary coding, a bit may be flipped based on a predefined

probability (usually low). A random number is generated, and the bit is flipped

(from 0 to 1 or from 1 to 0) if this value is less than the predefined probability.

Apart from the above operations, specified number of best individuals may be

designated as elite members for each generation. Elite members are automatically

retained in the next generation without crossover or mutation. As the optimization

progresses, the population converges to regions with minimum objective function

value. In the case of constrained optimization, a penalized objective function is

used to define the fitness function.

The use of genetic algorithms has several advantages. Because they require only

the function values, and not their derivatives, GAs can handle discontinuities. Also,

they can be used for both continuous and discrete variables. In addition, individuals

of the population can be evaluated in parallel to reduce the computational cost.

GA is a stochastic method, and provides a good possibility of finding the global

optimum when several local optima are present. However, as a result of the

randomness, different executions of the same problem may sometimes provide

different solutions.

The GPS and GA methods reviewed above, as well as methods such as SA and

PSO follow certain heuristics to balance exploration and exploitation. Although

convergence to global optimum is not guaranteed, these methods are likely to find

the global solution. However, all these methods face certain issues that limit their

scope of application:
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• Parameters of the optimization need to be fine tuned for efficient performance

of these algorithms. Fine tuning the parameters is problem specific and needs

a prior insight about the problem.

• The number of function evaluations can be high. Especially if each function

evaluation is expensive, direct application of these methods may not be pos-

sible.

2.6.3 Surrogate-based adaptive sampling methods

In Section 2.4, the basic concepts of response approximation using surrogates were

presented. It was stated that a surrogate can be used to replace the actual responses

within any optimization method. Another important use of surrogates is that be-

cause they provide an insight into the variation of responses with respect to the

variables, they provide methods for adaptive selection of samples. In particular,

an adaptive sampling method referred to as Efficient Global Optimization (EGO)

(Jones, D.R. et al. (1998)) using Kriging has gained significant popularity, in the

context of optimization. At any sample x, Kriging provides a mean prediction of

function value as well as a variance. Because of the variance associated with the

prediction, even a point with a higher predicted mean objective function value than

the current best solution f(x∗) (or f ∗) may have a non-zero probability of being

lower than the current solution (Figure 2.14). This allows for the calculation of

expected improvement (EI) of the objective function:

EI(x) = E
[
max(0, f ∗ − f̂)

]
=

∫ f∗

−∞
(f ∗ − f)ff̂ (x)df (2.26)

where f ∗ is the objective function value at the current best solution, ff̂ is the

probability density function of the approximated values, and f is a realization of

ff̂ . The basic idea in EGO is to adaptively evaluate samples that maximize the EI,

because such samples are expected to improve the objective function. Equation 2.26

can be integrated to express EI as follows.

EI(x) = (f ? − µf )Φ
(
f ? − µf
σf

)
+ σfφ

(
f ? − µf
σf

)
(2.27)
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where φ and Φ are the standard normal probability density function and the cu-

mulative density function. Maximization of the EI balances the exploration of the

unsampled space and the exploitation of the current model in the regions with low

objective function values. The derivation of EI (Equation 2.27) is provided in Ap-

pendix B.

objective function

Gaussian process model 

for objective function

evaluated sample

Figure 2.14: Depiction of the probability of improving the current best solution.

Several modifications of EGO have been reported based on modification of the

sample selection criterion. For example, samples may be selected based on a gener-

alized expected improvement (GEI) function (Sasena, M.J. et al. (2002)):

GEI(x) = E
[
max(0, (f ∗ − f̂)q)

]
=

∫ f∗

−∞
(f ∗ − f)qff̂ (x)df (2.28)

The exponent q in the GEI expression governs the globality or locality of the

search. For q = 0, the GEI reduces to the probability of improvement, which results

in a very local search. For q = 1 GEI reduces to EI. For higher values of q, the

search is more global. Several other sample selection criteria can also be found in

the literature (Sasena, M.J. (2002); Forrester, A.I.J. et al. (2008)). Constrained

formulations for EGO have also been developed (Schonlau, M. (1997); Sasena, M.J.

(2002); Audet, C. et al. (2000); Forrester, A.I.J. et al. (2008)). Some of these are

discussed in Chapter 7.
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For many problems, use of surrogates for optimization is very efficient. However,

optimization using surrogates is hampered by the presence of discontinuities and

binary states. Also, handling of multiple constraints is a challenge. A method with

classification-based constraint handling is presented in Chapter 7 to overcome such

issues.

2.7 Reliability assessment methods

Several reliability assessment methods can be found in the literature, some of which

are presented in this section. A major portion of the review is dedicated to reliability

assessment methods for uncertainties represented using random variables, for which

the literature is abundant. These methods assume the uncertainties to be spatially

invariant. A brief review of methods considering spatial variation is also presented in

latter sections. In addition, an introduction to the treatment of correlated random

variables is also provided.

2.7.1 Probability of failure calculation with spatially invariant uncertainties

Mean value method

The mean value method (Cornell (1969)) is one of the simplest reliability assessment

methods that is based on the first and second moments of the response function at

a single point, which is the mean configuration of the random variables. The mean

response value and variance are calculated based on first order Taylor expansion:

µg ≈ g(µx) (2.29)

σ2
g ≈

m∑

i=1

m∑

j=1

∂g

∂xi
(µx)

∂g

∂xj
(µx)COV (xi, xj) (2.30)
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Assuming the response distribution to be Gaussian centered at µg, the probability

of failure is:

Pf = P (z ≤ 0) = P (g(x) ≤ 0) = Φ

(
0− µg
σg

)
(2.31)

Equation 2.31 can also be written in terms of the “safety” or “reliability” index β,

defined as the ratio between the mean value and the standard deviation of g:

β =
µg
σg

(2.32)

It can be seen from Equation 2.32 that reliability index is high for a large positive

value of g, because a large g represents a safe configuration, negative g being failure

by convention. Also, β is higher for low values of σg, because this represents less

uncertainty in the response. Equation 2.31 can be rewritten as:

Pf = Φ

(
0− (βσg)

σg

)
= Φ(−β) (2.33)

The reliability index β can be interpreted as the number of standard deviations

separating the mean µg and the threshold g(x) = z = 0 (Figure 2.15). Increasing

β decreases the probability of failure, irrespective of the distribution of g(x). It is

thus, an indicator of the reliability of a system. However, the probability of failure

calculated using Equation 2.33 is correct only if g(x) is normal. For non-normal

distributions, it is more appropriate to only provide the β value as a measure of

reliability.

g

0z
)0( failure z

)0(  zPPf

)(zfZ

g

Figure 2.15: Failure probability and reliability index β.
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MPP-based methods

Hasofer-Lind Method for normal Variables

One of the issues with Mean Value method lies in the variability of the reliability

index β when different formulations of the same limit state function are used (Haldar,

A. and Mahadevan, S. (2000)). This limitation was first overcome in the Hasofer-

Lind method, which introduced a “generalized reliability index” (Hasofer and Lind

(1974)). In this method, the random variables are transformed into standardized

variables:

ui =
xi − µi
σi

(2.34)

Thus, the resistance and load variables R an S are transformed to:

uR =
R− µR
σR

uS =
S − µS
σS

(2.35)

The limit state function is also transformed into the space of standardized variables:

g(x) = R− S

⇒ gu(u) = σRuR − σSuS + µR − µS (2.36)

The reliability index in Equation 2.32 can be written as:

β =
µg
σg

=
µR−S
σR−S

=
µR − µS√
σ2
R + σ2

S

(2.37)

Because gu(u) (Equation 2.36) is linear in the R− S space, the reliability index

β in Equation 2.37 can easily be shown to equal the distance of gu(u) = 0 from the

origin of the standardized space. If R and S are linear combinations of variables

ui, then gu is linear with respect to these variables also. Equation 2.37 can then

be generalized to the space of variables ui. The generalized reliability index β is

defined as the algebraic distance of the mean (origin in standardized space) to the

closest point on the limit state, known as the design point or most probable point

(MPP):
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β = sign(gu(u = 0))||u∗|| = sign(gu(u = 0))

√√√√
m∑

i=1

(u∗i )
2 (2.38)

Being the closest point to the mean lying on the limit state, MPP is the most likely

configuration at which failure can occur. Farther the MPP from the mean, greater

is the reliability.

The Hasofer-Lind method provides a reliability index that is invariant with

respect to the problem formulation. However, it does not include information about

the distribution of z or the probability of failure. The probability of of failure can

only be calculated in the case of normal random variables using Equation 2.33.

First and Second Order Reliability Methods for Non-normal Variables

As mentioned in previous section, Hasofer-Lind method can only be used to predict

failure probabilities with normal variables. In addition, the probability of failure

is accurate only for linear limit state functions. These limitations were overcome

with the development of first and second order reliability methods respectively

(FORM and SORM) (Hohenbichler and Rackwitz (1983); Hohenbichler et al.

(1987); Haldar, A. and Mahadevan, S. (2000); Melchers, R.E. (1999)).

In FORM and SORM, all random variables are first converted to uncorrelated

standard normal space or U-space. If the original variables are uncorrelated then

this conversion is straightforward:

ui = Φ−1FXi(xi) (2.39)

where Φ is the standard normal cumulative density function and F is the cumulative

density function of the original random variables. A more detailed explanation

of conversion of correlated variables to standard normal space is given in Section

2.7.3.



56

In order to calculate the probability of failure, the MPP is located in standard

normal space. The reliability index is:

β = sign(gu(u = 0))

√√√√
m∑

i=1

(u∗i )
2 = sign(gu(u = 0))

√
u∗i

Tu∗i (2.40)

MPP is located by solving the following optimization problem:

min
u

√
u∗i

Tu∗i

s.t. gu(u) = 0 (2.41)

where gu is the limit state function in the standard normal space. The first order

Taylor expansion of g′ is given as:

gu(u) = b+ aTu = b+

(
∂gu
∂u

)T
u = 0 (2.42)

In most practical situations, the function gu or g is not available in closed form and

several evaluations of the implicit limit state function are required. An iterative

algorithm may be used to locate the MPP in the general case, starting from an

arbitrary point. The procedure is simpler for a linear performance function. For

a linear performance function, the starting point u0 may not lie on the limit state

g′(u) = 0, but it lies on a parallel line gu(u) = c (hyperplane in multi-dimensional

space). The minimum distance point can be found in a single step by searching

in the direction of the constant gradient vector a (Figure 2.16) (Haldar, A. and

Mahadevan, S. (2000)).

gu(u
∗) = gu(u + µa) = 0

u∗ =
1

|a|2 [aTu0 − gu(u0)]a (2.43)

For the non-linear case, the gradient vector a is not constant. The minimum

distance point is updated at each iteration using the previous gradient, and the new

values of the limit state function and its gradient are calculated. The algorithm is

repeated until convergence criteria are satisfied. Once the MPP is located, the first
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Figure 2.16: First Order Reliability Method (FORM).

order probability of failure is calculated using Equations 2.40 and 2.44.

Pf = Φ(−β) (2.44)

The first order probability of failure using Equation 2.44 is accurate only for lin-

ear limit state functions, as it does not include information about curvature (Figure

2.17).

Second order reliability method (SORM) (Hohenbichler et al. (1987); Haldar, A.

and Mahadevan, S. (2000); Melchers, R.E. (1999)) extends the method to quadratic

limit state functions by including second order information in the Taylor series

expansion:

gu(u) ≈ gu(u
∗) +

d∑

i=1

(ui − u∗i )
∂gu
∂ui

+
1

2

m∑

i=1

m∑

j=1

(ui − u∗i )(uj − u∗j)
∂2gu
∂ui∂uj

(2.45)

An approximation of the second order probability of failure (Breitung (1984)) is:

Pf ≈ Φ(−β)
d−1∏

i=1

(1 + βκi)
− 1

2 (2.46)

where κi denotes the ith principal curvature of the limit state at the MPP. The

above approximation of Pf is, however, accurate only for large β values. Also, it
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Figure 2.17: Limitation of FORM. Probability of failure using gu1 and gu2 will be
same using FORM because it only depends on the position of MPP and not the
curvature.

does not consider cross terms between variables (Haldar, A. and Mahadevan, S.

(2000)).

The major limitation of FORM and SORM lies in the first or second order Taylor

expansion of the limit state function. As a result, the probability of failure estimate

can have significant errors when the limit state is highly nonlinear and consists of

several MPPs. Modified FORM and SORM methods have been developed to account

for multiple MPPs (Der Kiureghian and Dakessian (1998); Barranco-Cicilia, F. et al.

(2009); Gupta and Manohar (2004)). The basic idea is to find the multiple MPPs

successively and treat each MPP as if it corresponds to a component limit state.

The probability of failure is calculated using a series system reliability analysis based

on the component limit states. One method to solve for successive MPPs is to solve

the following optimization problem (Barranco-Cicilia, F. et al. (2009)):

max
u

Ig(u)
m∏

i=1

φUi(ui)

s.t. ||uj − u∗k|| ≥ R ∀k,R ∈ [1, 3] (2.47)

In Equation 2.47, once an MPP u∗k is located, it is surrounded by an imaginary



59

hypersphere of radius R. Thus, the next optimization finds a different solution and

not the current MPP. Although such methods can significantly improve the accuracy

of failure probability, they also increase the cost of reliability analysis. Also, they

still may not be accurate in the general case as the component limit states are based

on first or second order approximations.

Combination of MPP search and response approximation

Mean value method, based on two first moments of the response function z = g(x),

and the MPP-based methods (FORM and SORM) are based on first and second

order approximations of the limit state function. Therefore, their accuracy in the

general case is questionable. Also, the search for MPP may require several function

evaluations. More advanced methods based on combination of MPP search and ap-

proximation of response z have been developed to overcome these limitations. These

include methods such as Advanced Mean Value (AMV) (Wu et al. (1990); Youn,

B.D. et al. (2005)) and Two Point Adaptive Nonlinear Approximations (TANA)

(Wang and Grandhi (1995); Wang and Grandhi (1994)).

The first step in AMV consists of finding the Mean Value solution. However, it

is known that this is valid only in the case of linear limit state functions. Therefore,

additional function evaluations are performed to improve the approximation of the

probability density function for z. The main steps in AMV are:

1. Expand g(x) as a linear function about µx

2. Use the linear approximation of g(x) to calculate reliability index β and MPP

for k different values of z, i.e. for k translated limit states z − z(k)
0

3. Reevaluate z at each design point. This provides k new pairs of βi and zi and

thus gives an improved estimate of the CDF of z. This is referred to as the

advanced mean value estimate.

The above method is hampered if multiple MPPs are present, because it is based

on following the locus of the MPP for sample evaluation. Variations of the method



60

have been developed to overcome such issues. However, these methods are still not

sufficient if several MPPs are present (Wu et al. (1990)).

Two-point Adaptive Nonlinear Approximation (TANA) method follows a similar

idea of combining MPP search with response approximation. In order to account

for nonlinearity of limit state functions, a nonlinearity index ri is introduced in this

method for the ith random variable. The physical variables xi are transformed to yi

as:

yi = xrii , i = 1, 2, . . . ,m (2.48)

Starting from a Mean Value solution, MPP is updated until convergence. Approxi-

mation of response g(x) is based on information at the last two MPPs x1 and x2, and

is obtained by expanding about the current MPP x2 (Wang and Grandhi (1994)):

g(x) ≈ g(x2) +
m∑

i=1

∂g(x2)

∂yi
(yi − yi,2) +

1

2

m∑

i=1

∂2g(x2)

∂y2
i

(yiyi,2)2

≈ (x2) +
m∑

i=1

∂g(x2)

∂xi

∂x1−ri
i,2

ri
(xrii − xrii,2) +

1

2
ε2

m∑

i=1

(xrii − xrii,2)2 (2.49)

The nonlinearity indices ri and the coefficient ε2 are unknown. Thus, Equation 2.49

has m+ 1 unknowns that require m+ 1 equations for solution. These unknowns are

calculated based on zero and first order information at previous MPP x1.

g(x1) = (x2) +
m∑

i=1

∂g(x2)

∂xi

∂x1−ri
i,2

ri
(xrii,1 − xrii,2) +

1

2
ε2

m∑

i=1

(xrii,1 − xrii,2)2

∂g(x1)

∂xi
=

(
xi,1
xi,2

)ri−1
∂g(x2)

∂xi
+ ε2(xrii,1 − xrii,2)xri−1

i,1 ri i = 1, 2, . . . ,m (2.50)

The first MPP estimate is based on the mean value solution. For this first itera-

tion, the previous design point x1 is set equal to the mean. The MPP is updated

iteratively until the reliability index β converges.

Sampling methods

Monte Carlo Simulations

All methods presented in previous sections are based on certain approximations
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regarding the shape of limit state function. It is always possible to find counterex-

amples where these methods are unable to provide accurate probabilities of failure.

The most basic reliability assessment method, which does not make any assumption

regarding the shape of limit state, consists of numerical integration using Monte

Carlo simulations (Metropolis and Ulam (1949); Melchers, R.E. (1999)). It is of-

ten used as a benchmark for validating the accuracy of other methods. The basic

concept of MCS is shown in Figure 2.18 using two random variables. It consists

of generating a large number of random samples based on the PDFs of random

variables concerned. Response values are evaluated at all these samples, and the

samples lying in the failure domain Ωf are identified. For instance, the responses

may be compared to a threshold response governing the failure criterion for this

purpose. The probability of failure in Equation 2.5 can be written in discrete form

as:

Pf =
Nf

NMC

=
1

NMC

NMC∑

i=1

Ig(xi) (2.51)

where Nf is the number of MCS samples lying in the failure domain Ωf and NMC

is the total number of MCS samples. Ig(x) is an indicator function given as:

Ig (x) =





1 x ∈ Ωf

0 otherwise
(2.52)

MCS provides accurate probabilities of failure irrespective of the level of non-

linearity, provided a sufficiently large number of samples is used. The accuracy of

probability of failure depends on the level of probability and the number of samples

NMC . If there are Nf occurrences of failure among NMC samples, the probability of

obtaining Nf failures using MCS P (Nf ) is:

P (Nf ) =

(
NMC

Nf

)
P
Nf
f (1− Pf )NMC−Nf (2.53)

The probability of failure Pf has a distribution centered at
Nf
NMC

. If NMC is small,

the variance of this distribution is high. This might result in inaccurate estimation

of Pf . The variance tends to zero when NMC tends to infinity. The coefficient of
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Figure 2.18: Monte Carlo Simulations. Failure probability is the fraction of samples
in the failure region (shaded).

variation for the probability of failure estimate is:

COV =

√
P tf (1−P tf )

NMC

P t
f

=

√
1− P t

f

NMCP t
f

(2.54)

where P t
f is the true probability of failure. The 95% confidence interval of the MCS

estimate is:

95% CI =

[(
Pf − 2Pf

√
1− P t

f

NMCP t
f

)
,

(
Pf + 2Pf

√
1− P t

f

NMCP t
f

)]
(2.55)

It is evident from Equation 2.54 and 2.55 that the coefficient of variation and

confidence interval of probability estimate can be quite high if the actual probability

of failure P t
f appearing in the denominator is small. In many engineering problems,

the cost of a single simulation can be quite high, e.g. for impact analysis or for

fluid-structure interaction problems. Therefore, the high number of MCS samples

required for an accurate probability of failure makes the method impractical to use

in most situations.

Variance Reduction Techniques for Monte Carlo Simulations

Due to the large number of samples required, application of MCS directly is not
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possible in many practical situations. Methods have been developed to reduce

the number of MCS samples, using variance reduction techniques. Using these

techniques, accurate results are obtained using relatively smaller MCS sample size.

Also, they allow the calculation of much lower probabilities of failure compared to

basic MCS. The general approach in these methods is to select the samples in a

way that will reduce variance, instead of randomly generating samples in the whole

space based on the original probability density functions of the random variables.

One of the popular variance reduction techniques is Importance Sampling (IS)

(Harbitz (1986); Schueller and Stix (1987); Melchers (1989)), which aims to con-

centrate the distribution of Monte-Carlo samples in the region of most importance,

i.e. the the region that contributes most to the failure probability. There are sev-

eral ways to achieve this. One way is to select the samples outside the β sphere

around the origin of the standard normal space (Harbitz (1986)). Because β is the

distance to the closest point on the limit state function, there are no failures within

the sphere. In another approach, the mean of the sampling points is translated to

the MPP (Melchers (1989)). Because the distribution of samples is centered at the

MPP, and not the origin of standard normal space, more samples lie in the failure

domain. This helps in reducing the variance while calculating small probabilities

of failure. In all IS methods, samples are generated using a modified probability

density function referred to as the IS density. Therefore, the probability of failure

cannot be calculated directly by calculating the fraction of samples in the failure

domain (Equation 2.51). Instead, a weighing factor is required to relate the modified

PDF to the original one. The probability of failure is calculated as:

Pf =

∫

Ωf

fX(x)dx =

∫

Ωf

fX(x)

pX(x)
pX(x)dx =

1

NMC

NMC∑

i=1

Ig(xi)
fX(xi)

pX(xi)
(2.56)

where pX is the IS density function.

A critical step in IS is to select an appropriate IS density. The issue with IS

is that information about the optimal IS density (Ang et al. (1992)) not known a
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priory. Adaptive Importance Sampling (AIS) (Givens and Raftery (1996); Au and

Beck (1999)) can be used to overcome this issue. In AIS, the IS density function

is updated as more information is added. An AIS method proposed in Au and

Beck (1999) aims at approximating the optimal IS density using the Markov Chain

Monte Carlo (MCMC) method (Gilks et al. (1996)) and Kernel Sampling Density

(Ang et al. (1990, 1992)). The optimal importance sampling density is:

popt(x) =
Ig(x)fX(x)

Pf
(2.57)

The optimal IS density is not known a priori as Pf is unknown. However it can be

approximated using MCMC, which requires only the ratio of popt(x) at candidate

samples. As a result, the constant of proportionality 1
Pf

cancels out. Once a

sufficiently large number of samples is selected using MCMC, an approximation of

the optimal density is constructed using Kernel Sampling Density Methods. This

approximation is then used to calculate the probability of failure using Equation

2.56.

Stratified sampling is another technique to reduce the variance (Haldar, A. and

Mahadevan, S. (2000)). In this method the total domain is divided into several mu-

tually exclusive domains. Specified number of samples is generated in each region.

More samples are selected in the regions that contribute to the failure event. The

required probability of failure is then calculated using the theorem of total probabil-

ity, by considering the probabilities of the individual regions Ri, and the conditional

probabilities of failure within those regions:

Pf =

NR∑

i=1

N
(i)
f

N
(i)
MC

P (Ri) (2.58)

where P (Ri) is the probability of region Ri, NR is the number of mutually exclusive

regions, N
(i)
MC is the number of Monte Carlo samples in the region Ri, and N

(i)
f is

the number of failed Monte Carlo samples in the region Ri.
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Another useful variance reduction technique for failure probability calculation is

Subset Simulation (Au and Beck (2001); Au et al. (2007)). It is especially useful

for calculating very low probabilities of failure. Instead of tackling the low failure

probability in a single step, the calculation of probability of failure is performed in

several steps with higher target probabilities of failure. Larger probability values

are calculated more accurately using a relatively smaller sample size. The samples

for the first step are generated using MCS. The threshold response g
(1)
0 for first step

is selected such that the fraction of samples with g(x) ≤ g0 is equal to the target

probability. For subsequent steps, conditional samples are selected using MCMC.

These samples are selected such that they lie in the failure region based on the

previous threshold. The next threshold (lower g
(2)
0 ) is again calculated in the same

manner based on the target failure probability. The process is repeated until g
(i)
0 is

zero. First two steps of Subset Simulations Method are shown in Figure 2.19.

)1(

0
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)1(

0
)( gg x
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0
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Subset Simulation Step 1 Subset Simulation Step 2

Figure 2.19: First two steps of Subset Simulations Method. The shaded regions in
left and right figures are F1 and F2 (F2 ⊂ F1).

Representing failure in ith substep by Fi (Fi ⊂ Fi−1), the probability of failure
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is calculated as:

Pf = P (F1)

Nstep∏

i=2

P (Fi|Fi−1) (2.59)

where Nstep is the number of substeps required. The target probability in subset

simulations is usually selected between 0.1 to 0.2.

The number of samples required is significantly reduced by the application

of variance reduction techniques, but it can still be quite high. Actual function

evaluation at each of these points can still be computationally expensive. This

issue can be addressed using surrogate models, as explained in Section 2.7.1.

Surrogate-based adaptive sampling methods

The basic response approximation methods presented in Section 2.4 use a DOE to

sample the space globally. The probability of failure can be calculated based on the

approximated response, e.g. using MCS (Equation 2.51). The indicator function is:

Ig (x) =





1 ĝ(x) ≤ 0

0 ĝ(x) > 0
(2.60)

where ĝ is the approximation of the response function g, and is evaluated efficiently.

However, for an accurate probability estimate, the interest lies in certain regions

of the space close to the limit state g(x) = 0. Therefore, the procedure based

on a static DOE may not be accurate. Adaptive sampling techniques have been

developed to overcome such issues and construct an accurate response approximation

in the vicinity of the limit state function (Wang, G.G. et al. (2005); Bichon, B.J.

et al. (2007)). Of particular interest is the Kriging-based Efficient Global Reliability

Analysis (EGRA) (Bichon, B.J. et al. (2007)). Kriging provides the variance of

response approximation along with response values, which allows for an efficient

sampling strategy. Using Kriging, a response function g(x) is approximated using

Equation 2.14. In EGRA, an initial Kriging approximation is built using a DOE.
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The approximation is adaptively updated based on an Expected Feasibility Function

(EFF):

EFF (x) =

∫ z̄+ε

z̄−ε
[ε− |z̄ − g|]fĝ(x)dg (2.61)

where fĝ is the PDF of approximated limit state function values, g represents a

realization of fĝ, ε is proportional to the standard deviation of the Kriging prediction

σg, and z̄ is the threshold response. For consistency of conventions z̄ = 0, and

Equation 2.62 can be written as:

EFF (x) =

∫ ε

−ε
[ε− |g|]fĝ(x)dg (2.62)

Equation 2.62 can be integrated to express EFF in analytical form. The adaptive

samples are selected such that they maximize the EFF. There are two factors that

lead to a high EFF. It is high if x is close to the g(x) = 0 contour or if the variance

of Kriging predictor at x is high.

The EGRA method explained above, as well as other surrogate-based methods,

work efficiently as long as responses are continuous. However, these methods are

hampered by discontinuous and binary responses. Also, the method, in its orig-

inal form, is not suitable for multiple failure modes. Recent attempts to extend

surrogate-based reliability assessment for handling multiple failure modes have been

made using active set methods (Bichon et al. (2010)). However, a more natural way

of handling multiple failure modes is to treat reliability assessment as a classifica-

tion problem instead of a response approximation one (Section 2.5). The conceptual

shift from approximation to classification is the core idea in this dissertation, and it

also enables the handling of discontinuous and binary responses.

2.7.2 Probability of failure calculation with spatially varying uncertainties

Most reliability assessment methods in the literature use random variables for rep-

resenting uncertainties. However, random variables may not provide a realistic rep-

resentation in cases with spatial variation of parameters. For example, in sheet
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metal forming, thickness may vary from one sheet to another. However, even for

a single sheet, thickness may not be constant everywhere. Such spatial variations

are represented more realistically using random fields (Sudret and Der Kiureghian

(2000)). These considerations are, therefore, important in the reliability assessment

of such systems. Most of the literature pertaining to random fields is based on

stochastic finite element methods (SFEM) (Ghanem and Spanos (2003); Stefanou

(2009); Sudret and Der Kiureghian (2000)). This section presents a brief overview of

these methods. The general approach for reliability assessment with random fields

consists of two steps:

• Characterization of random field. The general practice is to discretize a ran-

dom field and represent it using a few random variables.

• Reliability assessment using random variables representing the discretized ran-

dom field.

Characterization of random fields

A random field can be interpreted as a collection of infinite random variables over

the space. Such a representation, however, is not practical. The general practice

to represent random fields for reliability assessment is to discretize them at selected

points in the space. There are several ways of representing random fields. These in-

clude point estimate methods, average discretization methods and series expansion

methods. Point estimation methods involve representation of random fields using

values at specific points in the space, such as finite element centroids, nodes or inte-

gration points. Average discretization methods involve representation using average

values at specific points, such as averaging of element values at nodal points. Using

series expansion methods, a random field is represented exactly as a series, and an

approximation is obtained by truncating the series. A commonly used method to

represent random fields is Karhunen-Loeve (KL) expansion based on the eigenvalue

decomposition of the autocovariance function (Ghanem and Spanos (2003)):

S = S̄ +
∞∑

i=1

√
λiξiφi (2.63)
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where S̄ is the mean at a specific spatial point, ξi are stationary random variables,

and λi and φi are the eigenvalues and eigenfunction obtained from the spectral de-

composition of the autocovariance function associated with the random field. The

discrete form of KL expansion is referred to as Proper Orthogonal Decomposition

(POD) (Bui-Thanh, T. et al. (2003); Liang,Y. C. et al. (2002)). In POD, M snap-

shots are observed at N measurement points. The random field is expanded on the

basis formed by the eigenvectors of the covariance matrix:

S = S̄ +
M∑

i=1

αiVi (2.64)

where Vi are the eigenvectors of covariance matrix and αi are random variables. Usu-

ally only a few terms of the expansion, with the largest eigenvalues, are important.

The random field is approximated as:

S = S̄ +
MS∑

i=1

αiVi (2.65)

where MS is the number of important features or eigenvectors and usually

MS << M . The expansion of a random field on the basis of eigenvectors of

covariance matrix is optimal in the sense that it gives a lower truncation error

compared to the same number of terms with any other basis. This is what makes

POD and KL expansion very attractive for representation of random fields.

Reliability assessment using random fields

The literature dealing with reliability assessment using random fields is largely dom-

inated by stochastic finite element method (SFEM) (Ghanem and Spanos (2003)).

SFE enables the propagation of uncertainties to obtain the distribution of system

responses using polynomial chaos expansion (PCE). This involves introduction of

uncertainties into the equilibrium equation by modifying the stiffness matrix, fol-

lowed by representation of the inverted stiffness matrix using an expansion. In

deterministic FEM, the nodal quantities d are solved from the following system of

equations:

Kd = F (2.66)
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In SFEM, uncertainties are propagated to the responses by introducing them in the

construction of stiffness matrix. For example, if the constitutive law is represented

by a random field, the stiffness matrix is expressed as:

K = K̄ +
∞∑

i=1

√
λi

(∫

Ω

φiB
T D̄BdΩ

)
ξi (2.67)

where D̄ is the elasticity matrix based on the mean value over the space (i.e. with-

out considering spatial variation), B is a matrix containing derivatives of shape

functions, and Ω is the volume of the material. The nodal quantities can be approx-

imated using Neumann series expansion (Yamazaki (1988)):

d =
∞∑

j=1

(−1)j

[
∞∑

i=1

K̄−1Kiξi

]j
d̄ (2.68)

where d̄ is the solution of Equation 2.66. Ki is given as:

Ki =
√
λi

(∫

Ω

φiB
T D̄BdΩ

)
(2.69)

The basis of expansion in Equation 2.68 is not orthogonal. The expansion of d can

also be related to an orthogonal basis of Hermite polynomials.

SFE provides a rigorous framework of propagating uncertainties in the form of

random fields. However, there are several difficulties that limit its use. It is quite ev-

ident that even for simple linear FEM problems, the use of SFEM is quite involved.

Use of SFEM is mostly limited to linear problems. Most SFEM methods are in-

trusive, although non-intrusive methods have also been developed recently (Ghiocel

and Ghanem (2002); Berveiller et al. (2006); Huang et al. (2007)). A portion of this

dissertation also addresses the calculation of probabilities using random fields. The

proposed method in Chapter 8 is non-intrusive, and is based on a combination of

POD and SVM-based EDSD.

2.7.3 Probability of failure calculation with correlated random variables

The reliability methods in Section 2.7.1 were presented for independent random

variables. Further, some of the methods are based on independent normal variables
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only. In general however, random variables can have any probabilistic distribution

type. Also, in real applications, random variables associated with a system are often

correlated. Not accounting for such correlation can lead to erroneous probability

of failure estimates. Therefore, there is a need to calculate probabilities of failure

with correlated variables. The general approach for addressing problems with

correlated random variables is to transform them into equivalent uncorrelated

standard normal variables. Two of the common methods, Rosenblatt and Nataf

transformations, are presented in this section.

Rosenblatt transformation

In Rosenblatt Transformations, variables are transformed from the original X-space

to standard normal space (U -space) using conditional distributions. The transfor-

mation is performed one variable at a time:

u1 = Φ−1FX1(x1)

u2 = Φ−1FX2(x2|x1)

...

um = Φ−1FXm(xm|x1, x2, . . . , xm−1) (2.70)

Conditional probability density function of ith variable in the X-space is:

fXi(xi|x1, x2, . . . , xi−1) =
fX1,X2,...,Xi(x1, x2, . . . , xi)

fX1,X2,...,Xi−1
(x1, x2, . . . , xi−1)

(2.71)

The conditional cumulative density functions are calculated by integrating Equation

2.71. These are then substituted into Equation 2.70 to perform the transformation.

There are two main issues in Rosenblatt Transformation. First, because conditional

distributions are used, it depends on the order in which variables are transformed.

Also, it requires the knowledge of the joint probability density function, which is

not always available. These issues are overcome in Nataf Transformation presented

in the following section.
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Nataf transformation

The transformation of any instance of arbitrary correlated random variables xi to

uncorrelated standard normal samples ui, using Nataf Transformation, is a two step

process. First, a transformation to correlated standard normal space is performed.

In the next step, a transformation to remove the correlation is performed.

• Step 1 (Transformation to correlated standard normal space): Suppose the

marginal marginal cumulative distribution functions of variables xi are known.

Transformation to correlated standard normal variables is obtained as:

u0
1 = Φ−1FX1(x1)

u0
2 = Φ−1FX2(x2)

...

u0
m = Φ−1FXm(xm) (2.72)

Unlike Rosenblatt Transformation, Nataf transformation does not require con-

ditional joint probability distributions. However, it should be noted that the

standard normal variables u0
i are correlated, and still need to be decorrelated.

The correlation matrix ρ0 in U0-space is required for this purpose. However,

it is not the same as ρ in X-space. A relation is required between the two,

before decorrelating the standard normal variables. The relation between ρ0

and ρ can be determined from the basic definition of correlation coefficient:

ρij =
cov(Xi, Xj)

σXiσXj

=
E(XiXj)− E(Xi)E(Xj)

σXiσXj

=
1

σXiσXj

∫ +∞

−∞

∫ +∞

−∞
xixjfXi,Xj(xi, xj)dxidxj

− 1

σXiσXj

∫ +∞

−∞
xifXi(xi)dxi

∫ +∞

−∞
xjfXj(xj)dxj (2.73)

In order to relate ρ and ρ0, the relation between joint probability density
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functions in the X-space and U0-space is used:

fXi,Xj(xi, xj) = φ2(u0
i , u

0
j , ρ

0)
fXi(xi)fXj(xj)

φ(u0
i )φ(u0

j)
(2.74)

where φ2(u0
i , u

0
j , ρ

0) is the bivariate standard normal probability density func-

tion with correlation coefficient of ρ0. The Jacobian transformation (Lemaire

et al. (2009)) from X-space to U-space is:

fXi(xi)dxi = φ(ui)dui (2.75)

The simplified expression for correlation coefficient is:

ρij =

∫ +∞

−∞

∫ +∞

−∞
u0
iu

0
jfXi,Xj(xi, xj)dxidxj

=

∫ +∞

−∞

∫ +∞

−∞
u0
iu

0
jφ2(u0

i , u
0
j ; ρ

0
ij)du

0
i du

0
j (2.76)

Equation 2.76 is solved to find the ρ0 corresponding to each ρ. This process

is often replaced by a polynomial approximation (Kiureghian and Liu (1986))

to avoid solution of the double integral.

• Step 2 (Decorrelation of standard normal variables): The transformation from

correlated standard normal space (U0-space) to uncorrelated standard normal

space (U -space) is linear:

U0 = AU +B (2.77)

Both U0 and U here are standard normal variables and, therefore, have zero

mean. Using Equation 2.77, the means are calculated as:

E(U0) = E(AU +B) = AE(U) +B = 0 (2.78)

Equation 2.78 is satisfied only if B = 0. The transformation coefficient A is

obtained by solving the following system of equations:

AAT = ρ0 (2.79)

A is lower triangular matrix of ρ0 obtained by Cholesky decomposition.
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Although Nataf transformation is simpler to implement compared to Rosenblatt,

it has limitations that can lead to errors in the approximation of the joint cumu-

lative density function (Celorrio, L. et al. (2009)). More recently, use of various

copulas has gained popularity for performing the transformation to overcome some

of these limitations. Nataf transformation is a special case that uses a Gaussian

copula. In the work presented in this dissertation, correlation between variables

has not been considered. However, the methods can be applied in an uncorre-

lated space, following a transformation using the techniques discussed in this section.

2.7.4 Calculation of system reliability

In engineering applications, very often systems with several components are en-

countered. Each component has one or more associated responses that govern its

failure. The probability of failure for individual components can be calculated using

the methods presented in previous sections. However, if system reliability is to be

calculated then the knowledge of interactions between the components is necessary.

A system can be a series system, a parallel system or a combination of the two.

A series system is one, for which system failure is defined as the failure of one or

more components. For a parallel system, it is defined as the failure of all com-

ponents. The traditional method is to determine all the component probabilities

of failure and then calculate the system reliability through postprocessing of these

values (Lin, P.M. et al. (1976); Martz and Waller (1990)). For a series system, the

system probability of failure is:

P sys
f = 1−

nc∏

i=1

(1− P (ci)
f ) = 1−

nc∏

i=1

(1− P (gci(x) ≤ 0)) (2.80)

where P
(ci)
f is the probability of failure of ith component and nc is the number of

components. Probability of failure for a parallel system is:

P sys
f =

nc∏

i=1

P
(ci)
f =

nc∏

i=1

P (gci(x) ≤ 0) (2.81)
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It is possible to derive the probability of failure expressions for mixed systems al-

though they are more involved. The issue with treating each component separately

for system probability of failure calculation is that it might lead to unnecessary re-

sponse evaluations for all the components. Because the ultimate goal is to calculate

the system reliability, calculation of accurate failure probabilities for each system

may be unnecessary, and leads to additional computation cost. Bayesian methods

have been developed to perform selective testing at component and sub-system lev-

els, with the objective of minimizing the cost of evaluations (Sankararaman, S. et al.

(2011); Salas, P. et al. (2011)). Response approximation methods that avoid unnec-

essary evaluations have also been developed. One method is to build a composite

response approximation, e.g. based on the minimum of all component responses

for a series system. However, because the individual responses can be quite differ-

ent, this may lead to a discontinuous composite response. Approximation of such

a response becomes complicated and may not be accurate. Another method, based

on an extension of EGRA, was developed in Bichon et al. (2010) that does not

require a composite response function. Because the handling of responses is based

on classification using SVM in this dissertation, the proposed method is unaffected

by the presence of discontinuities. A single SVM can therefore be used to represent

the system-level limit state function, instead of approximating each component-level

one. The same advantages apply in the context of multiple failure modes for one or

more components.

2.7.5 Error margins in reliability assessment

Until now, several methods for reliability assessment under different conditions

have been presented in this chapter. Methods with and without correlation between

different sources of uncertainties were presented. Also, methods to consider spatial

variations of uncertainties were presented. However, despite significant research

activities in the area, reliability assessment of systems is still prone to errors. Errors

can arise due to modeling errors, or due to approximations in the representation

of uncertainties and in the failure probability calculation method. Therefore,
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quantification of uncertainties in the reliability assessment methods themselves is

also important. Conservative estimates can be used to reduce the chances of failure.

Several methods exist for providing conservative probability of failure estimates.

One of the most basic approaches is to use a safety factor or safety margin while

predicting responses. Conservative estimates of responses can be obtained as:

ĝc(x) = ĝ(x) + SM (2.82)

ĝc(x) = ĝ(x)× SF (2.83)

where SM is a positive Safety Margin and SF is a safety factor greater than 1.

Probabilities of failure calculated using responses ĝc(x) given by Equations 2.82

and 2.83 will be more conservative compared to those using ĝ(x). However, the

choice of safety factor and safety margin is arbitrary, and they may not be effective

always.

Another method to quantify uncertainties in predicting response values and cor-

responding failure probabilities, in the context of surrogate-based methods, is to

use the variance of prediction. Confidence intervals for failure probabilities can be

provided using regression or Kriging. Such a confidence interval is, however, based

on prior assumptions on the error distribution of the surrogate. Another approach

for quantifying prediction errors is to apply Bootstrap method, which does not as-

sume any prior error distribution (Picheny, V. (2009)). In this dissertation, errors in

calculation of failure probabilities using SVMs are quantified using a method based

on PSVMs. The proposed method is presented in Chapter 6.

2.8 Reliability-based design optimization (RBDO) methods

An overview of various methods for deterministic optimization and reliability assess-

ment was provided in previous sections. The importance of considering uncertainties

in design was emphasized. This is achieved in Reliability-based Design Optimiza-

tion (RBDO), in which uncertainties are considered during optimization. Unlike
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deterministic optimization with a factor of safety, in which reliability of the system

is generally unknown, RBDO is performed with a specified (usually low) level of

failure probability. Typically, RBDO problems are formulated as:

min
x̄

f(x̄)

s.t. P (g(x) ≤ 0)− PT ≤ 0 (2.84)

where f is the objective function, g is the limit state function and PT is the

target probability of failure. x̄ is the mean design configuration. The quantity

P (g(x) ≤ 0) is the probability of failure. In the general case, the failure region may

be represented by multiple limit state functions corresponding to different modes

of failure. In many cases, instead of using the probability of failure directly, the

RBDO problem is defined using reliability index β:

min
x̄

f(x̄)

s.t. βT − β ≤ 0 (2.85)

It is quite evident from Equations 2.84 and 2.85 that optimization and reliability

assessment are coupled in an RBDO problems. The nature of implementation of

this coupling separates one RBDO method from the others. There are three major

RBDO frameworks that exist, although a combination of the methods can also be

used. The RBDO methods differ further from each other based on the method used

for optimization and reliability assessment. In Section 2.8.1, a brief overview of the

three RBDO frameworks is provided. This is followed by a brief overview of some

RBDO implementations with different reliability assessment methods in Section

2.8.2.

2.8.1 Reliability-based design optimization (RBDO) frameworks

There are three major RBDO frameworks based on how the coupling between

optimization and reliability assessment is implemented. The three frameworks,
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namely Double-loop Method, Sequential Method and Single-Loop Method, are

presented in the following sections.

Double-loop RBDO

The double loop method is the most rigorous among the three RBDO frameworks

(Choi and Youn (2001)). The basic idea is shown in Figure 2.20. The selected op-

timizer starts from an initial sample or a set of samples depending on the method.

Subsequent samples are selected by the optimizer based on the objective function

and the probabilistic constraint information at previous samples. Determining the

probabilistic constraint information requires reliability assessment at each step of the

optimization, which in itself is an iterative process (Section 2.7). Thus, the double-

loop method involves a nested reliability assessment loop within the optimization

loop. This implies that the computation time for optimization and reliability as-

sessment are multiplied. Therefore, although this method is rigorous, it is also the

most expensive one.

Sequential RBDO

In sequential optimization (Du and Chen (2004)), the reliability assessment loop is

decoupled from the optimization loop. The basic concept of sequential RBDO is de-

picted in Figure 2.21. Although both loops are present, they are performed in series

and are not nested within each other. This is achieved by converting the probabilis-

tic optimization into an equivalent deterministic optimization at each step, based

on a “shifted” threshold on the responses. After an optimum is obtained by solving

the deterministic optimization at each step, reliability assessment is performed at

the optimum to verify the satisfaction of the probabilistic constraint.
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Figure 2.20: Double-loop RBDO.

Single-loop RBDO

Single-loop method (Agarwal (2004)) is the most efficient among the three RBDO

frameworks. It is based on the idea of completely eliminating the reliability as-

sessment loop. Instead of having two loops, one for optimization and the other for

reliability assessment, the probability of failure is accounted for within the outer

optimization problem using first order approximation. The RBDO formulation is:

min
x̄

f(x̄)

s.t. g(x∗) ≥ 0

x∗ = x̄− βT
∇g′(x∗)
||∇g′(x∗)|| ≈ x̄− βT

∇g′(x̄)

||∇g′(x̄)|| (2.86)

where x∗ is the inverse MPP, i.e. the point corresponding to MPP in the X-space.

The approximation of x∗ in Equation 2.86 assumes equal gradients at x∗ and

x̄. Therefore, the MPP can be calculated in a single step, using the constraint
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Figure 2.21: Sequential RBDO.

function and gradient information at the mean. As a result of the approximation,

the inner loop for MPP search in reliability assessment is completely eliminated

with the single-loop formulation. Although this approach can significantly reduce

the computation cost for RBDO, it is limited in terms of its accuracy. The method

is limited to first order reliability assessment, which is inaccurate in the general case.

2.8.2 Review of RBDO implementation methods

Several RBDO implementations are reported in the literature. These include

implementations based on a single framework, as well as combinations of different

frameworks. Except for the single-loop method, which is limited to first order

reliability assessment, several different reliability assessment methods have been
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implemented within RBDO frameworks.

Most of the double-loop and sequential RBDO methods found in literature re-

quire a search for the MPP. A major part of the computation time is required to

located the MPP. Because RBDO involves repeated reliability assessment subprob-

lems, efficiency of the MPP search is of critical importance in these methods. Two

types of formulations are used to locate the MPP. The MPP search for reliability

assessment is traditionally performed using Equation 2.41. The distance of the MPP

to the mean (equal to the reliability index β) is minimized such that it lies on the

zero-level of the limit state function. This approach is referred to as the reliability

index approach (RIA) (Yu, X. et al. (1997)). In the context of RBDO, an alternate

formulation, referred to as the inverse reliability approach or performance measure

approach, is possible to locate the MPP (Youn, B.D. (2005)). It is based on the

idea that the failure probability is usually active at the solution (i.e. Pf = PT or

β = βT ). Therefore, the MPP search can be formulated as:

min
u

g′(u) = 0

s.t. β = βT (2.87)

Locating the MPP using PMA is more efficient than the RIA. Also, it is less prone

to numerical instabilities. Both RIA and PMA implementations based on reliability

assessment methods such as FORM, SORM, AMV, TANA etc. have been developed.

Although most methods are based on a specific RBDO framework, those with

sequential combination of different frameworks have also been developed (Youn

(2007)). Also, RBDO methods based on surrogate-based reliability assessment have

also gained popularity to reduce computational cost and handle highly nonlinear

limit state functions (Rais-Rohani and Singh (2004); Youn, B. and Xi, Z. (2009); Bi-

chon, B.J. et al. (2009)). In Bichon, B.J. et al. (2009), the EGRA method presented

in Section 2.7 was implemented within an RBDO framework to address multimodal

functions. Other recent implementations include methods for handling correlated
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input variables (Noh, Y. et al. (2009)). Methods for handling both discrete and

continuous variables have also been developed (McDonald, M. and Mahadevan, S.

(2008)). Dimensionality reduction methods have also been used for reducing the

computation cost (Youn, B. and Xi, Z. (2009)).

2.9 Concluding remarks

An introduction to the basic concepts of optimization, reliability assessment and

RBDO are presented in this chapter. An review of existing methods is also pre-

sented. The review is intended to cover the major ideas regarding variations in such

methods, with the purpose of identifying areas that need improvement. Reliabil-

ity assessment methods are classified as Mean Value, MPP-based, Sampling-based,

Surrogate-based, and Classification-based methods. Several common limitations of

the non-classification methods were identified, such as handling of discontinuous and

binary responses, and multiple failure modes. In the context of optimization also,

several methods are hampered by discontinuous and binary responses. Handling of

multiple constraints is also a challenge if each constraint function is expensive to

evaluate. In RBDO, all the difficulties associated with optimization and reliabil-

ity assessment are coupled, making it a very challenging process. This dissertation

proposes a new classification-based method to address many of the issues faced in

current optimization, reliability assessment and RBDO methods.
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CHAPTER 3

SUPPORT VECTOR MACHINES

Support vector machines (Vapnik, V.N. (1998); Shawe-Taylor, J. and Cristianini,

N. (2004); Gunn, S.R. (1998)) are a class of machine learning techniques that can

be used for classification or regression. In particular, SVMs have gained significant

popularity as classification tools in the computer science community. They have

widespread applications in pattern recognition, such as spam filtering, insurance

decision making etc. As stated in Chapter 2, SVMs can be used in optimization

and reliability assessment for approximating decision boundaries (failure domain

boundaries or optimization constraints). The main feature of SVMs that makes

them attractive for this research lies in their flexibility to define highly nonlinear

decision boundaries that optimally separate two classes of samples. The purpose of

this chapter is to provide an overview of the theory of SVMs for classification (Section

3.1). In addition, an introduction to probabilistic support vector machines (PSVMs)

(Vapnik, V.N. (1998); Wahba, G. (1999); Platt, J.C. (1999)) is also provided. While

an SVM provides binary classification of the space, a PSVM provides a probability

of belonging to a specific class. The basic concept of PSVMs as well as a commonly

used PSVM model are presented in Section 3.2.

3.1 Support vector machines as binary classifiers

This section presents an introduction to binary classification using SVMs. The

basic SVM theory is derived for linearly separable data in Section 3.1.1. It is then

generalized to the nonlinear case in Section 3.1.2.
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3.1.1 Linear SVM boundary

To introduce SVM, we define a set of N training samples xi in a m dimensional

space. Each sample is associated with one of two classes characterized by a value

yi = ±1. In the case of linearly separable data, the two classes of samples can be

separated using a hyperplane (straight line in two dimensional space). It should

be noted that there are an infinite number of hyperplanes that can separate the

samples (Figure 3.1).

+1 class

-1 class

linear separators

Figure 3.1: Multiple linear functions separating two classes.

The SVM algorithm finds the decision boundary that optimally separates the two

classes of samples. In the linear case, the basic idea is to maximize the “margin”

between two parallel hyperplanes that separate the data. This pair of hyperplanes

is required to pass at least through one of the training points of each class, and there

cannot be any points inside the margin (Figure 3.2). The points that these hyper-

planes pass through are referred to as “support vectors”. The optimum decision

boundary is half way between these two previously described hyperplanes referred

to as “support hyperplanes”.

Equation of the linear SVM boundary is:

s(x) = w · x + b = 0 (3.1)

where w is the vector of hyperplane coefficients, x is a point in space and b is the
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class +1

SVM boundary

support vectors

margin

class -1

support hyperplanes

1
x

2
x

Figure 3.2: Linear SVM decision boundary.

bias. Equations of the two support hyperplanes are:

s(x) = w · x + b = ±1 (3.2)

The perpendicular distance between the support hyperplanes or the margin is equal

to 2
||w|| . None of the samples can lie within the margin between support hyperplanes.

This constraint can be represented as:

1− yi(< w,xi > +b) ≤ 0 ∀i ∈ [1, N ] (3.3)

where <,> is the inner product. The optimization problem to find the SVM bound-

ary is:

min
w,b

1

2
||w||2

s.t. 1− yi(< w,xi > +b) ≤ 0 ∀i ∈ [1, N ] (3.4)

The Lagrangian is given as:

Φ(w, b,λ) =
1

2
||w||2 +

N∑

i=1

λi (1− yi(< w,xi > +b)) (3.5)
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where λi are the Lagrange multipliers. It is easier to solve the dual formulation of

Equation 3.4 (Gunn, S.R. (1998)):

max
λ

(
min
w,b

Φ(w, b,λ)

)

s.t. λ ≥ 0 (3.6)

Minimization of the Lagrangian with respect to w and b provides the following

relations:
∂Φ

∂w
= 0⇒ w =

N∑

i=1

λiyixi (3.7)

∂Φ

∂b
= 0⇒

N∑

i=1

λiyi = 0 (3.8)

Using Equations 3.6-3.5, the dual problem is given as (Gunn, S.R. (1998)):

min
λ

1

2

N∑

i=1

N∑

j=1

λiλjyiyj < xi,xj > −
N∑

k=1

λk

s.t. λi ≥ 0

N∑

i=1

λiyi = 0 ∀i ∈ [1, N ] (3.9)

The SVM optimization is a Quadratic Programming (QP) that can be solved effi-

ciently with available optimization packages. Following the Kuhn and Tucker condi-

tions, only the Lagrange multipliers associated with the support vectors are strictly

positive, while the rest are zero. Once the Lagrange multipliers are found, the op-

timal hyperplane coefficient vector w∗ is calculated using Equation 3.7. Optimal

value of the constant b is:

b∗ = −1

2
< w∗,x+ + x− > (3.10)

where x+ and x− are any support vectors from +1 and −1 classes. The optimal

SVM boundary is:

s(x) =
NSV∑

i=1

λiyi < xi,x > +b = 0, (3.11)
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where NSV is the number of support vectors. In general, the number of support

vectors is a small fraction of the total number of training points. The classification

of any sample x is given by the sign of s(x).

The SVM optimization problem may not always be feasible. The inequality

constraints are then relaxed by the introduction of non-negative slack variables ηi

which are minimized through a penalized objective function. The relaxed optimiza-

tion problem is:

min
w,b

1

2
||w||2 + C

N∑

j=1

ηj

s.t. 1− ηi − yi(< w,xi > +b) ≤ 0 ∀i ∈ [1, N ] (3.12)

where C is the penalty coefficient referred to as the misclassification cost. In the dual

formulation, C becomes the upper bound for all the Lagrange multipliers (Gunn,

S.R. (1998); Vapnik, V.N. (1998)):

min
λ

1

2

N∑

i=1

N∑

j=1

λiλjyiyj < xi,xj > −
N∑

k=1

λk

s.t. 0 ≤ λi ≤ C

N∑

i=1

λiyi = 0 ∀i ∈ [1, N ] (3.13)

3.1.2 Nonlinear SVM boundary

In Section 3.1.1, the SVM equation was derived for the linear case. In the general

case, however, the training samples need not be linearly separable in the space

{x1, x2, . . . , xm}. However, the samples can still be linearly classified in a higher

dimensional space known as the “feature space”. The dimensions or “features” of

this space are denoted as {φ1(x1), φ2(x1), . . . , φn−1(xm), φn(xm)}. Because the SVM

is linear in feature space, the equations in Section 3.1.1 can be generalized to this
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space. The dual problem to solve the SVM becomes:

min
λ

1

2

N∑

i=1

N∑

j=1

λiλjyiyj < φ(xi), φ(xj) > −
N∑

k=1

λk

s.t. 0 ≤ λi ≤ C

N∑

i=1

λiyi = 0 ∀i ∈ [1, N ] (3.14)

It is however interesting to note that φ appears only within an inner product that

results in a scalar function. Therefore, the inner product < φ(xi), φ(xj) > can be

replaced with a kernel function. As a result, there is no need to solve for the SVM

in the feature space, which can be high dimensional. Thus, the problem of finding

the SVM becomes much simpler. This simplification is referred to as the “kernel

trick”. The optimization problem to find the SVM is:

min
λ

1

2

N∑

i=1

N∑

j=1

λiλjyiyjK(xi,xj)−
N∑

k=1

λk

s.t. 0 ≤ λi ≤ C

N∑

i=1

λiyi = 0 ∀i ∈ [1, N ] (3.15)

The equation of SVM boundary is:

s(x) = b+
NSV∑

i=1

λiyiK(xi,x) = 0 (3.16)

where

< w∗,x >=
NSV∑

i=1

λiyiK(xi,x)

b∗ = −1

2

NSV∑

i=1

λiyi (K(xi,x+) +K(xi,x−)) (3.17)

It should be noted that it is not actually required to find w∗ in order to obtain the

SVM equation. The class of any sample is given by the sign of s(x).
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3.1.3 Kernel function and SVM parameters

In previous sections, the SVM equations for linear and nonlinear cases were pre-

sented. Two important quantities in the equation are the kernel function K and

the misclassification cost C. The kernel function in Equation 3.16 can have several

forms, such as polynomial, Gaussian radial basis function, splines, fourier series etc.

The polynomial and Gaussian kernels are used in this dissertation. The polynomial

kernel is given as:

K(xi,x) = (1 + 〈xi,x〉)p , (3.18)

where p is the degree of the polynomial kernel.

The Gaussian kernel is given as:

K(xi,x) = exp

(
−‖xi − x‖2

2σ2

)
(3.19)

where σ is the width parameter of the Gaussian kernel.

It is important to select appropriate values of the kernel parameters, e.g. degree

of polynomial or width parameter of Gaussian kernel. A common method to select

the kernel parameters is to use cross-validation techniques (Cawley and Talbot

(2003)). Several cross-validation techniques exist, such as hold out, K-fold, and

leave one out cross-validation (Cawley and Talbot (2003); Hamel (2009)). In K-fold

cross-validation, the training samples are randomly partitioned into K sets. One

out of the K sets is used for validation, and the remaining samples are used for

training the SVM. The cross-validation process is then repeated K times, with each

of the K sets used as the validation data once. This process is repeated for each

candidate value of the kernel parameters. The kernel parameter value with the best

validation results is then selected. In leave one out cross-validation, the validation

set consists of only one sample and the rest N − 1 samples are used for training.

The cross-validation process is repeated N times with each training sample as the

validation data.
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In this dissertation, another technique is used to select the kernel parameters.

They are selected such that the boundary constructed is the “simplest” one without

any training sample misclassification. For the polynomial kernel, this corresponds to

the lowest degree polynomial that does not produce any training misclassification.

For a Gaussian kernel it corresponds to the highest width parameter σ that does

not produce training misclassification.

The misclassification cost C determines the penalty for violating the constraint

of having an empty margin (Equation 3.3). A smaller value of C provides a larger

margin. It can however lead to training misclassification. The parameter C can

also be found using cross-validation. However, in this dissertation, C is set to

infinity to avoid any training misclassification.

3.1.4 General features of SVM

An SVM has several features that make it useful for optimization and reliability

assessment:

• It is multidimensional.

• It provides the optimal decision boundary by maximizing the margin.

• The boundary constructed using an SVM can be highly nonlinear and can

represent several disjoint regions as well as multiple failure modes.

An example of three dimensional nonlinear SVM is demonstrated in Figure 3.3.

3.2 Probabilistic support vector machines (PSVMs)

Unlike deterministic SVMs, which assign a binary class label ±1 to any point in the

space, PSVMs provide the probability that a point will belong to the +1 class or
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SVM boundary

Figure 3.3: Three dimensional nonlinear SVM.

the −1 class. Thus, a PSVM also considers the variability in the construction of the

SVM boundary s(x) = 0 and quantifies the prediction error. That is, it provides

the probability that a given point in the space will be misclassified by the SVM. An

example of misclassification of the space by an SVM is shown in Figure 3.4.

An extensively used model for PSVM is based on the representation of proba-

bilities using a sigmoid function (Platt, J.C. (1999)). The probability that a point

x belongs to the +1 class is given by:

P (+1|x) =
1

1 + eAs(x)+B
(3.20)

The parameters A(A < 0) and B of the sigmoid function are found by maximum

likelihood, by solving the following problem (Platt, J.C. (1999)):

min
A,B

−
N∑

i

tilog (pi) + (1− ti) log (1− pi) , (3.21)

(3.22)
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Figure 3.4: Misclassification of the space by an SVM. The shaded yellow regions are
classified incorrectly by the SVM.

where N is the number of training samples, pi = P (1|xi) and ti is given as:

ti =
yi + 1

2
, (3.23)

where yi are the class labels. Thus, t = 1 for the +1 samples and t = 0 for

the samples belonging to the −1 class. Further details of solving the maximum

likelihood problem can be found in Lin et al. (2007).

The basic sigmoid model presented in this section has some limitations that are

overcome in a new PSVM model developed in this research. Further discussion on

PSVMs is provided in Chapter 6. In Chapter 6, PSVMs are also used to provide a

relatively conservative estimate of the probability of failure compared to determin-

istic SVM, to compensate for some of the consequences of an inaccurate SVM.

3.3 Concluding remarks

This chapter presents an introduction to the basic concepts of SVMs and PSVMs

that are essential for this dissertation. They are used for constructing approxima-

tions of decision boundaries (failure boundaries and optimization constraints) in
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the following chapters. The basic theory of constructing an SVM is presented for

the linear case, before extending it to the nonlinear case. A commonly used sig-

moid PSVM model is also presented that quantifies the prediction error of SVM.

An improved PSVM model developed in this research will be presented in Chapter

6.
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CHAPTER 4

EXPLICIT DESIGN SPACE DECOMPOSITION BASICS AND GLOBAL

UPDATE OF SVMs

This chapter introduces the notion of explicit design space decomposition (EDSD)

using SVMs, which is the fundamental idea around which all the methodologies

developed in this dissertation revolve. A short introduction to classification-based

methods for defining decision boundaries was presented in Chapter 2. The funda-

mentals of SVM classification were also presented in Chapter 3. Several features of

SVMs were presented, such as their ability to optimally classify high dimensional

data, definition of highly nonlinear boundaries etc. These features make it a flexible

tool for defining limit state functions or constraint boundaries, together referred

to as “decision boundaries”. The process of constructing an explicit boundary

that separates the space into distinct regions, e.g. failed and safe, or feasible and

infeasible, is referred to as explicit design space decomposition (EDSD). The basic

steps of constructing explicit decision boundaries using SVMs are presented in

Section 4.1. This is followed by a brief introduction to the procedure of performing

reliability assessment and optimization using explicit SVM boundaries (Sections 4.2

and 4.3). As was mentioned in Chapter 2, a critical research issue in any reliability

assessment or optimization method is to limit the computation cost. For the

same purpose, adaptive sampling methods have been developed in this research to

construct SVM boundaries. Section 4.4 presents an adaptive sampling method that

refines the SVM boundaries globally. In order to validate the developed method,

analytical test examples with known solutions are presented in Section 4.5. Two

application examples are also presented to show the usefulness of the approach. The

first one consists of nonlinear buckling of an arch, with discontinuous responses,

and the other involves tolerance optimization of a multibody system with several

failure modes.
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4.1 Basic explicit design space decomposition (EDSD) methodology using SVMs

The basic idea in EDSD, as the name suggests, is to decompose the space into

regions of distinct behaviors using explicit decision boundaries. The boundary may

represent a limit state function, in the context of reliability assessment, or the

zero-level contour of optimization constraints. The use of SVMs is proposed for

constructing the boundaries, because they have the ability to optimally classify

highly nonlinear data. The main steps of EDSD are as follows.

• Design of Experiments: The first step is to sample the space using a DOE

(Montgomery, D.C. (2005)). In order to extract information over the en-

tire space, a uniform design of experiments such as Centroidal Voronoi Tes-

sellations (CVT) (Romero, Vincente J. et al. (2006)), Latinized Centroidal

Voronoi Tessellations (LCVT) or Optimal Latin Hypercube Sampling (OLHS)

(Liefvendahl, M. and Stocki, R. (2006)) can be used. CVT and LCVT DOEs

are used in this research. Examples of CVT DOEs with different number of

samples in a two-dimensional space are shown in Figure 4.1.
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Figure 4.1: Example of two-dimensional CVT DOEs with 10, 20 and 50 samples.

• Response Evaluation at DOE Samples: At each of the DOE samples, system

responses are evaluated. The evaluation may be performed using a computer

code, e.g. finite element analysis, or through experiments (e.g. crash testing).
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• Response Classification at DOE Samples: Once the system responses are avail-

able at the DOE samples, the samples are classified based on these values, e.g.

safe and failed. The classification can be performed using a threshold response

or using a clustering technique, such as K-means (Hartigan, J.A. and Wong,

M.A. (1979)). Clustering is required when the system responses are discon-

tinuous and there is no prior knowledge of a threshold response. It should

be noted that the clustering is uni-dimensional, and is based on the response

values. In the case of binary data, the classification information is available

directly. Examples of classification using threshold response and clustering are

depicted in Figure 4.2.

Figure 4.2: Example of classification using threshold response (left) and clustering
(right).

• Construction of the explicit boundary that separates the two classes: An ex-

plicit boundary separating the samples belonging to distinct classes is con-

structed. In this work, the boundaries are constructed using SVMs (Chapter

3), due to their flexibility in defining highly nonlinear boundaries.

A summary of the basic SVM-based EDSD method is provided in Figure 4.3.
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Figure 4.3: Summary of explicit design space decomposition using SVM.

4.2 Reliability assessment using explicit SVM boundaries

The methodology for constructing SVM boundaries separating two classes of samples

was presented in Section 4.1. Once an SVM is constructed it provides an analytical

approximation of the boundary separating the samples (Equation 3.16), which is

the failure domain boundary in the context of reliability assessment. Because an

analytical approximation of the failure domain boundary is available, any of the

reliability assessment methods presented in Section 2.7.1 can be used to calculate

the probability of failure. The most straightforward method is to perform Mote

Carlo simulations (MCS) (Equation 2.51). Because an analytical approximation is

available, a large number of Monte Carlo samples can be used. The class of any

Monte Carlo sample (xi) is obtained using the sign of SVM value s(xi) (Figure 4.4).

Thus, the probability of failure is calculated as:

Pf =
1

NMCS

NMCS∑

i=1

Ig(xi)

Ig (x) =





1 s(x) ≤ 0

0 s(x) > 0
(4.1)

For low probabilities of failure, methods such as importance sampling, MCMC,

subset simulations etc. can be used.
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Figure 4.4: MCS based on SVM approximation of failure boundary.

4.3 Optimization using explicit SVM boundaries

Similar to failure boundaries in the context of reliability assessment, an SVM can also

provide an analytical approximation of optimization constraints (Figure 4.5). In the

context of multiple constraint problems, a single SVM can be used to represent the

feasible space. Considering the case when the objective function is easy to evaluate

(e.g. weight of a structural design), it is straightforward to perform optimization

using the constraint zero-level contour approximation given by SVM. Any of the

methods in Section 2.6 can be used. A method to handle cases where the objective

function is also expensive is presented in Chapter 7.

For reliability-based design optimization, two types of approximations are re-

quired. One is the approximation of the failure boundary, separating safe and failed

samples, and the other approximation is for the probabilistic constraint to identify

the regions with allowable probability of failure (i.e. Pf ≤ PT ). First, the explicit

failure boundary is obtained using the method in Section 4.1. Once the SVM ap-

proximation for failure boundary is constructed, it allows the efficient calculation of

probability of failure at any point in the space (Section 4.2). Therefore, the proba-

bility of failure can be calculated at a large number of samples. The next step is to
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Figure 4.5: Optimization using SVM approximation of the zero-level of constraint
function.

approximate the probabilistic constraint. There are two alternatives to do that:

• Approximation method: The probability of failure values at the large sample

set are converted to the corresponding reliability index β values using the

inverse of Equation 2.33:

β = −Φ−1(Pf ) (4.2)

This is done because the variation of β is usually smoother than that of the

corresponding Pf values. The β values are then fitted to a response surface or

metamodel (Section 2.4). For example, Kriging or support vector regression

(SVR) can be used.

• Classification method: The second alternative is to classify the large sample

set into two categories based on the values of Pf calculated using Equation

4.1. The samples with Pf ≥ PT are labeled as +1 and the ones with Pf < PT

are labeled as −1. A second SVM boundary is then constructed that separates

these two classes. This boundary approximates the zero-level contour of the

probabilistic constraint. The procedure is discussed in more detail in Chapter

5.
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4.4 Adaptive sampling for construction of accurate SVM boundaries

The basic EDSD method presented in Section 4.1 was based on a static DOE, and

therefore, the SVM boundary may not provide an accurate approximation of the

actual decision boundary, unless a large number of samples is used. Therefore,

adaptive sampling is an important part of EDSD, as it is required to provide high

accuracy of the approximated decision boundary with limited number of samples.

A global update strategy to refine SVM boundaries is presented in this section. An

initial SVM is constructed using a relatively sparse DOE. It is then updated using

adaptively selected samples, until convergence. Two types of samples, referred to as

primary and secondary samples, are used in the update. The overall methodology

for constructing the boundaries is presented in Algorithm 4.1. For the sake of

clarity, details of the scheme are presented in subsequent sections.

Algorithm 4.1: Methodology for global update of SVM boundaries

1: Sample the space with a CVT DOE.

2: Evaluate the system response at each sample (e.g. using a finite element code).

3: Classify the samples into two classes (e.g. safe and failed) based on the response

values. The classification is performed using a threshold value or a clustering

technique.

4: Set iteration k = 0

5: Select the parameters for constructing the SVM boundary (Section 3.1.3).

6: Construct the initial SVM boundary that separates the classified samples.

7: repeat

8: k = k + 1

9: Select a primary sample on the SVM boundary (Section 4.4.1) and reconstruct

the SVM with the new information.
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10: Re-execute line 9 to select another sample.

11: Select a secondary sample to prevent locking of the SVM (Section 4.4.1).

Modify the SVM parameters (Section 3.1.3) and reconstruct the SVM bound-

ary.

12: Calculate the convergence measure ∆k.

13: until ∆k ≤ δ1

4.4.1 Selection of samples to update the SVM

Details of sample selection for the update are presented in this section. As already

mentioned in previous section, two types of samples are used. Details of these

samples and the motivations for their selection are presented in this section.

Primary samples on the SVM boundary

The first type of samples used in the update are referred to as “primary samples”.

These samples are selected such that they lie on the SVM boundary in regions of

space that are sparsely populated. The motivations of this choice are as follows:

• A sample on the boundary has high probability of misclassification. Such a

sample may belong to either one of the two classes.

• It lies in the margin of SVM and, therefore, compels it to change. By con-

struction, there cannot be any sample within the SVM margin.

• The selection of samples in sparsely populated regions avoids redundancy of

data.

Two primary samples are selected at each iteration, in order to have higher

frequency compared to secondary samples. The selection of a primary sample is

performed by maximizing the distance to the closest training sample while lying

on the SVM boundary (Equation 4.3). Figure 4.6 shows the selection of a primary
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sample and the SVM boundary update due to it. The optimization problem to

select a primary sample is:

max
x

dmin(x)

s.t. s(x) = 0 (4.3)

where dmin(x) is the distance to the closest training sample. The maxmin problem

in Equation 4.3 is non-differentiable at the boundaries where the closest sample to

x switches. The problem is made differentiable by reformulating it as:

max
x,z

z

s.t. ||x− xi|| ≥ z ∀i ∈ [1, N ]

s(x) = 0 (4.4)

Finding the maxmin distance sample is a global optimization problem. However, for

the results in Section 4.5, the differentiable formulation of the global optimization

problem (Equation 4.4) is solved using a local optimizer (sequential quadratic

programming). Multiple starting locations given by the existing training samples

are used for the optimization. It is also possible to use a global optimization

method such as GA or branch and bound (Weise (2009)). GA can be used with

the formulation in Equation 4.3, as it does not require differentiability of the func-

tions. An implementation of GA is available in Matlab. Implementation of branch

and bound method is available in a software referred to as DIRECT (Finkel (2003)).

Secondary samples to prevent locking of the SVM

In addition to primary samples, another sample, referred to as a “secondary

sample” is evaluated at each iteration. Secondary samples are evaluated to prevent

a phenomenon referred to as “locking” of the SVM, and to improve the convergence

of the SVM. Although selection of samples on the SVM boundary compels it to
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Figure 4.6: Selection of a new training sample on the SVM boundary while maxi-
mizing the distance to the closest sample. The right figure shows the updated SVM
decision boundary.

change, the extent of this change may vary. Modification of SVM boundary due to a

primary sample may be negligible if the margin (loosely, the local distance between

s(x) = ±1) is thin, thus wasting function evaluations. When locating a sample

on the SVM within a thin margin, which by construction should not contain any

sample, the change in boundary due to the update is inevitably small. If this small

change occurs in a region with a relatively uniform amount of information from

both classes in the vicinity of the added sample, then the SVM can be assumed to

be locally accurate. However, if the data from one class is sparse, then the slow

convergence rate becomes an issue. This is referred to as the “locking” of the SVM

(Figure 4.7).

As a result of the locking phenomenon, the SVM boundary may not converge to

the actual one with reasonable amount of data in certain localized regions. There-

fore, in addition to primary samples selected on the SVM boundary, a secondary

sample directed specifically at the prevention of SVM locking is evaluated. A
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Figure 4.7: Locking of the SVM due to reduction of the margin (region between
dashed red curves). A new sample on the boundary (brown circle), belonging to
the magenta square class, produces negligible change although there is no sample
belonging to the opposite class (blue triangles) nearby.

potential area for locking is identified as one in which data from one class is sparse

in the vicinity of the boundary. If a secondary sample selected in such a region is

misclassified by the current SVM then it results in significant change of the SVM

boundary (Figure 4.8).

Selection of the sample is a two step process:

• Selection of center xc and radius R of a hypersphere.

• Selection of a secondary sample within the hypersphere.

Two possible choices are presented to select a secondary sample, along with
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their merits and demerits:

Secondary sample method 1: In this method (Figure 4.8), the center xc is selected

as the support vector farthest from existing samples of opposite class. The objective

of secondary sample is to locate regions with nonuniform data belonging to the two

classes in the vicinity of the SVM boundary. The motivation of selecting the support

vectors as center is that it is known that these samples lie close to the boundary.

Therefore, if the distance to the closest opposite class sample from a support vector

is large, then it represents locally nonuniform data in the vicinity of the boundary.

Radius of the hypersphere is given as:

R =
1

2
||xc − xopp|| (4.5)

where xopp is the closest sample to xc belonging to the opposite class. The secondary

sample is selected within the hypersphere with center xc and radius R. The sample

is chosen so that it belongs to the opposite class of the support vector according to

the current SVM prediction:

min
x

s(x)yc

s.t. ||x− xc|| ≤ R

s(x)yc ≤ 0 (4.6)

where yc is the class label (±1) of xc. The objective function in Equation 4.6 also

appears as a constraint in order to avoid an optimum solution with a positive

objective function value, i.e. to avoid a solution for which the current SVM provides

the same class for the support vector and the secondary sample. The optimization

is solved using SQP starting from the center xc. If no feasible solution is found for

Equation 4.6, the support vector with next highest value of R is selected as the

center. It is noteworthy that the choice of R as one half of ||xc − xopp|| will prevent

the sample from being chosen too close to regions with existing samples, such as

xopp itself.
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The limitation of selecting a secondary sample in this manner is that it is con-

strained to lie in regions surrounding the support vectors. Thus, it may ignore

other regions with nonuniform distribution of samples. This limitation is overcome

in a modified method to select secondary samples presented below. In this modified

method, referred to as method 2, the center is not constrained to be chosen from

the support vectors. However, an optimization problem needs to be solved to find

the center. An advantage of selecting the center from the support vectors is that

solving for the secondary sample is very efficient.
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Figure 4.8: Evaluation of a secondary sample selected using method 1 to prevent
locking of the SVM boundary.

Secondary sample method 2: In this improved method (Figure 4.9), the center xc is

not constrained to be chosen from the support vectors. Instead, it is located on the

SVM boundary by solving an optimization problem:

max
x

(d−(x)− d+(x))2

s(x) = 0, (4.7)
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where d+(x) and d−(x) are the distances to the closest +1 and −1 samples. The

optimization can be solved using SQP with multiple starting points given by the

existing samples or using a global optimizer such as GA or DIRECT. Radius of the

hypersphere R is proportional to the measure of unbalance |d−(x)− d+(x)|:

R =
1

4
|d−(xc)− d+(xc)| (4.8)

The value of radius is selected based on the idea that if xc and the two closest

opposite class samples are collinear then the mid point of these two samples lies

at a distance 2R to the center xc. The secondary sample is selected within the

hypersphere by solving the following optimization problem:

min
x

sign(d−(xc)− d+(xc))s(x)

||x− xc|| −R ≤ 0 (4.9)

Because the center xc can lie anywhere on the SVM boundary, it does not ignore any

region. However, unlike method 1, finding xc requires solution of an optimization

problem. In the context expensive function evaluations, however, the time required

to locate the sample is just an overhead.

d
d

(arbitrary point)x

cx (point on SVM with 

largest unbalance)

R

secondary 

sample in shaded 

region

circle centered 

at cx

evaluated

secondary 

sample

cx

updated SVM

region with 

unbalanced data

(no +1 sample)

+1 class

-1 class

SVM locking secondary sample selection SVM update with locking removal

Figure 4.9: Locking of SVM with locally unbalanced data in the vicinity of SVM
(left), selection of a secondary sample (mid), and update of SVM due to the evalu-
ated secondary sample (right).
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4.4.2 Convergence criterion

Because the actual function is not known in general, the convergence criterion

for the update algorithm is based on the variation of the approximated SVM

boundary between two consecutive iterations. Two types of convergence measures

are presented in this section.

Polynomial coefficient based convergence measure

For the polynomial kernel used in most of the examples presented in this chapter, a

rigorous quantification of the variation is possible based on the coefficients. In order

to compare the polynomials at iterations k−1 and k, the coefficients are scaled such

that the largest coefficient (absolute value) at iteration k−1 is 1. The corresponding

coefficient for iteration k is also set to 1. The calculation of the convergence measure

is implemented as follows:

• Find the polynomial coefficients: In order to find the polynomial coefficients a

linear system of equations is solved. For a m-dimensional problem and a poly-

nomial kernel of degree p, the number of coefficients is
(
m+p
p

)
. In order to find

the coefficients, a set of
(
m+p
p

)
points is selected from a CVT distribution and

the corresponding SVM values are calculated. The coefficients are obtained

as:

α = Q−1s (4.10)

where s is the array of SVM values. The ith row of the matrix Q is given as:

Ri =
(

1 x1 x2 . . . xd . . . . . . xp1 (xp−1
1 x2) . . . xpm

) ∣∣
xi

(4.11)

Thus, the matrix Q is a square matrix of size
(
m+p
p

)
×
(
m+p
p

)
. Note that the

matrix Q is invertible and well conditioned as the samples to construct it are

uniformly distributed with CVT.
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Note that the coefficients could also be calculated using multinomial expan-

sion (Ma, N. (2001)) and Equation 3.16. The coefficient of a general term

xp11 x
p2
2 . . . xpmm , except for the constant term, in the SVM equation is given as:

αp1p2...pm =
p!∏m
j=0 pj!

N∑

i=1

(
λiyi

m∏

j=1

x
pj
j

)∣∣∣∣
xi

where
m∑

j=0

pj = p (4.12)

The constant term in the SVM equation is equal to b (Equation 3.16).

• Comparison of the coefficients between iterations: In order to compare the

coefficients between successive iterations k − 1 and k, the coefficients corre-

sponding to different degrees are separated into distinct arrays. The array of

coefficients corresponding to degree r is denoted as αr. The evolution of the

coefficients is studied separately for each degree (Figure 4.12). The reason for

studying each degree separately is that an identical relative change for two

coefficients, especially for the largest and smallest degrees, may not lead to

the same change in the boundary. The relative change in the norm of αr is

calculated for each degree and the maximum value is used as a measure of

convergence. The convergence measure is given by:

∆k = max
r

(
∆

(r)
k

)
(4.13)

where ∆
(r)
k is given as:

∆
(r)
k =

∣∣∣
∣∣∣α(k)

r −α
(k−1)
r

∣∣∣
∣∣∣

∣∣∣
∣∣∣α(k−1)

r

∣∣∣
∣∣∣

(4.14)

Convergence point based measure

The convergence measure in previous section can be used for polynomial kernels.

For other kernels, another measure based on “convergence points” may be used. For

this purpose, a set of Nconv “convergence points” is generated using an LHS DOE.

The fraction of convergence points for which there is a change of sign of s(x) between

two successive iterations is calculated. The number Nconv can be chosen to be quite
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high because the calculation of SVM values using Equation 3.16 is inexpensive.

Because the convergence points are generated using LHS, the generation of these

samples is efficient. As a general rule, 10 × 5m convergence points are used. By

choosing a large set of convergence points, Equation 4.15 can be used to achieve an

accurate estimate of the fraction up to a few dimensions, beyond which filling the

space becomes impossible.

∆k =
num(|sign(sk)− sign(sk−1)| > 0)

Nconv

(4.15)

where ∆k is the fraction of convergence points for which the sign of the SVM

evaluation changes between iterations k− 1 and k. sk and sk−1 represent vectors of

SVM values at the convergence points at iterations k and k − 1.

In order to implement a convergence criterion, the fraction of convergence points

changing sign between successive iterations is fitted by an exponential curve:

∆̂k = AeBk (4.16)

where ∆̂k represents the fitted values of ∆̂k. A and B are the parameters of the

exponential curve. The value of ∆̂k at the last iteration kc is checked after each

training sample is added. The slope of the curve is also calculated. For the update

to stop, the value of the fitted curve should be less than a small positive number ε1.

Simultaneously, the absolute value of the slope of the curve at convergence should

be lower than ε2.

AeBkc < ε1

−ε2 < BAeBkc < 0 (4.17)

The convergence point based measure can be used for any type of kernel.

However, it can only be used up to a few dimensions due to restrictions on filling

the space, as already mentioned.
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4.4.3 Error measures

The accuracy of an approximated SVM boundary is judged by its fidelity to the ac-

tual function. In practical problems, an error metric may not be available. However,

error measures can be obtained in the case of academic analytical test functions.

Two distinct error metrics are presented:

• Based on “test” points: The error may be quantified as the fraction of the

spatial volume which is misclassified by the SVM boundary. For this purpose,

a set of Ntest uniformly distributed “test” points is generated to densely sample

the whole space. The values of both the actual function and the SVM are

calculated for each test point. Since the actual function is analytical, these

function evaluations are efficiently performed. The number of test points being

much larger than the number of sample points, the error can be assessed by

calculating the fraction of misclassified test points (Basudhar, A. and Missoum,

S. (2008)). A test point for which the SVM and the actual function provide

different signs is considered misclassified. The error εk is given below:

εk =
num (s(xtest)ytest ≤ 0)

Ntest

(4.18)

where xtest and ytest represent a test sample and the corresponding class value

(±1) based on the actual (known) decision function.

• Based on polynomial coefficients of the SVM boundary: εk is a good measure

of the fraction of misclassified space if the space is sampled densely, but the

approach is limited to a few dimensions due to constraints on computational

resources. However, a measure based on polynomial coefficients is possible for

actual decision boundaries represented by polynomials. The relative error Ek

is given by:

Ek =

∣∣∣∣α(act) −α(k)
∣∣∣∣

||α(act)|| (4.19)

where α(act) is the array of the polynomial coefficients for the actual function.
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4.5 Examples

Several test examples demonstrating the efficacy of the SVM-based EDSD method

and the update methodology are presented. To validate the method, it is used to

reconstruct highly nonlinear boundaries given by known analytical functions. The

analytical decision functions are written in the form g(x) = 0. In order to perform

the SVM classification, the samples corresponding to g(x) > 0 and g(x) < 0 are

labeled +1 and -1 respectively.

In Section 4.5.1, the application of the update scheme to high dimensional

problems with up to seven variables is presented. The evolution of the polynomial

coefficient-based convergence and error measures during the update are shown.

Section 4.5.2 presents an example of SVM locking. In order to show the ability of

secondary samples to remove SVM locking, a comparison of adaptive sampling with

and without secondary sample evaluation is provided for this example. In both

Examples 1 and 2, the method 1 of selecting secondary samples has been used.

In addition to the analytical test problems, an example with nonlinear buckling

of an arch structure is presented in Section 4.5.3 to demonstrate the application

of the SVM-based EDSD method to discontinuous responses. Also, an example

with multiple failure modes for a multibody system is presented in Section 4.5.4.

The results for the two application examples were generated using an earlier

version of the update (Basudhar, A. and Missoum, S. (2008)) that did not have

secondary samples. The stopping criteria for Examples 4.5.3 and 4.5.4 are based

on convergence points.

The following notation will be used to present the results:

• Ninitial is the initial training set size.

• Ntotal is the total number of samples.
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• εinitial and εfinal are the test point-based errors associated with the initial and

final SVM decision boundaries respectively.

• Einitial and Efinal are the errors associated with the initial and final SVM

decision boundaries respectively, based on the comparison with the coefficients

of the actual functions.

4.5.1 Example 4.1: Global update for high dimensional problems

This section presents the application of the update scheme to three analytical test

functions of different dimensionality that are derived from the same general equation.

The functions presented consist of three, five and seven variables, and represent

non-convex and disjoint regions. The general equation written as a function of the

dimensionality m is:

g(x) =
m∑

i=1

(xi + 2β)2 − 3
m−2∑

j=1

j+2∏

l=j

xl + 1

β = −1 mod(i, 3) = 1

β = 0 mod(i, 3) = 2

β = 1 mod(i, 3) = 0 (4.20)

For example, the decision function in a three-dimensional case (Equation 4.21)

is obtained by substituting m = 3 in the general equation. The actual boundary

(decision function) for the three-dimensional case is plotted in Figure 4.10. It forms

several disjoint regions in the space. The failure domain boundary for this case is:

g(x) = (x1 − 2)2 + x2
2 + (x3 + 2)2 − 3x1x2x3 + 1 = 0 (4.21)

The polynomial kernel is used to construct the SVM boundary in each of the

examples. The degree of the polynomial is automatically selected as explained in

Section 3.1.3. As evident from Equation 4.20, the actual decision functions are

polynomials of degree 3. It is observed that for all the examples the algorithm au-

tomatically selects a polynomial kernel of degree 3 to construct the SVM boundary.
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Figure 4.10: Three-dimensional problem with disjoint regions. Actual decision
boundary.

Starting from relatively small CVT DOEs, the update algorithm is run up to a fixed

number of iterations for each of the examples to study the evolution of the error and

convergence properties of the algorithm. No actual convergence threshold is set for

these problems. The initial and final values of the error measure εk are calculated

using 107 uniformly distributed test points for all the examples. For the optimiza-

tion problems in Equations 4.4 and 4.6, a convergence criterion of 10−3 was used on

the objective function and the variables.

The results of the update for all three examples are listed in Table 4.1. The

final SVM boundary for the three-dimensional case is plotted in Figure 4.11. The

convergence plot for the three-dimensional example is depicted in Figure 4.12.

The square root of the convergence measure ∆k (Equation 4.13) is used for better

readability of the plot by compressing the difference between the largest and the

smallest values. The quantities ∆
(1)
k , ∆

(2)
k and ∆

(3)
k (Equation 4.14) are also shown.

The plot for ∆
(1)
k has a large peak in the beginning; however, being associated with
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Figure 4.11: Three-dimensional problem with disjoint regions. Updated SVM
boundary (light blue surface). The actual decision boundary is represented by the
dark brown surface.

the linear terms, this may not correspond to the largest change in the SVM. At

the end of the update all the quantities (∆
(1)
k , ∆

(2)
k and ∆

(3)
k ) converge to zero. The

errors (Ek) for the three examples are plotted together in Figure 4.13. The initial

and final values of the error measure εk are also provided in Table 4.1. The final

error εfinal, which measures the discrepancy between the approximated and the

actual boundary based a large number of test samples is lower than 0.1% even for

the seven dimensional example. Similarly, the error Efinal, based on the polynomial

coefficients, are also low. It must be emphasized that the latter measure, although

less intuitive than εfinal, allows one to quantify the error in higher dimensional

spaces.
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Figure 4.12: Three-dimensional problem. The bottom right figure shows the square
root of the convergence measure. The other figures show the variation of polynomial
coefficients corresponding to degrees 1,2,3.

d Ninitial Einitial (%) εinitial(%) Iterations Ntotal Efinal (%) εfinal(%)
3 40 58.25% 9.4% 200 640 0.01% 1.9× 10−3%
5 160 55.93% 14.1% 400 1360 0.47% 8.5× 10−3%
7 640 46.44% 8.6% 800 3040 3.54% 8.9× 10−2%

Table 4.1: Number of samples and corresponding errors for the three examples.
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Figure 4.13: Comparison of the errors associated with the three, five and seven
dimensional examples.

4.5.2 Example 4.2: Comparison of update schemes with and without secondary

samples

In order to depict the importance of evaluating secondary samples, a two dimensional

analytical test example is presented. The equation of the actual decision boundary

is:

g(x) = x2 − 2 sin(x1)− 5 (4.22)

The initial SVM boundary is constructed using 20 CVT samples. The update is run

up to 50 iterations and the final SVM boundary is constructed with a polynomial

kernel of degree 4. In order to demonstrate the effect of secondary sample evalua-

tions, the results are compared to the SVM boundary obtained after 50 iterations

using primary samples only. The final SVM boundaries with and without secondary

samples are plotted in Figure 4.14. The comparison of the evolution of the error

measure εk is shown in Figure 4.15. The final decision boundary using both primary

and secondary samples is close to the actual boundary whereas the scheme with-

out secondary sample evaluation displays the locking phenomenon in some localized

regions.
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Figure 4.14: Comparison of update with and without secondary samples. Update
using only primary sample results in locking (left). The regions where the SVM
boundary differs from the actual boundary are circled. The boundary updated
using both primary and secondary samples is very close to the actual boundary.
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Figure 4.15: Comparison of the evolution of error measure εk with (solid red) and
without (solid red) secondary sample evaluation.
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4.5.3 Example 4.3: Explicit failure boundary approximation for nonlinear buckling

of arch structure

The SVM-based EDSD method is applied to an arch structure subjected to a point

load at the center (Figure 4.16). The objective of this example is to demonstrate

the application of EDSD to problems with discontinuous responses. An arch is a

typical example of a geometrically nonlinear structure exhibiting a snap-through

behavior once the limit load is reached. A buckled structure is considered as failed in

this example whereas configurations that do not lead to buckling are considered safe.

The arch considered in this example has a radius of curvature R = 8 m and

subtends an angle θ = 14◦ at the center of curvature. The thickness t, the width

w, and the load F are random variables. The arch structure, simply supported at

the ends, is modeled in ANSYS using SHELL63 elements. Due to the symmetries

of the problem, only one fourth of the arch needed to be modeled. The range of

values allowed for the design parameters are listed in Table 4.2.

Figure 4.16: Arch geometry and loading.

Thickness (t) Width (w) Force (F )
Min Value 3 mm 150 mm 2000 N
Max Value 10 mm 500 mm 8000 N

Table 4.2: Range of random variables for arch buckling
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To construct the SVM decision function, first an initial LCVT (Romero, Vincente

J. et al. (2006)) DOE consisting of 10 points is generated with thickness, width and

load as the three variables. The variables are normalized by dividing the values by

their respective maximum values. The studied response is the displacement of the

central node which is solved for at each training sample (design configuration given

by the LCVT DOE) using ANSYS. The response shows a clear discontinuity. The

discontinuous variation of the displacement with respect to the thickness and width

is depicted in Figure 4.17 for a fixed value of the applied load.

Figure 4.17: Discontinuous response of arch. The response (displacement) is ob-
tained for a constant load F = 6400 N.

The discontinuity in displacement is used to separate the responses into two

clusters using K-means clustering (Hartigan, J.A. and Wong, M.A. (1979)). One of

the clusters corresponds to buckling (failure) while the other corresponds to design

configurations which do not exhibit buckling. These two classes of samples in the

design space are labeled as “+1” and “-1”. This information is used to construct
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the initial SVM boundary, which is then adaptively updated. A previous version

of the adaptive sampling algorithm has been used for this example (Basudhar, A.

and Missoum, S. (2008)). The Gaussian kernel is used, with a width parameter

σ = 2.2. At every iteration the displacement of the new point is solved for. The

new sample is added to the training set, and K-means clustering is then used

again to reassign class labels to all the training samples based on their respective

displacement values. After reassigning the class labels, SVM is reconstructed. The

information is used for the selection of a new training sample in the next iteration,

until the convergence criterion is met. The measure based on convergence points is

used for this example.

The number of convergence points Nconv for the calculating ∆k is 312, 500, and

the values of ε1 and ε2 are 10−3 and 5× 10−4 respectively. The number of training

samples required to construct the final updated SVM decision function is 48. The

initial and final SVM decision functions are shown in Figure 4.18. For comparison, an

SVM decision function is also constructed using 48 LCVT training samples. Figure

4.19 shows that the decision function generated using 48 LCVT samples (dark brown

surface) deviates from the updated SVM decision function (light grey surface). On

the contrary, the updated decision function is very similar to the decision function

(deep blue surface) constructed with a larger LCVT training set of 150 samples

(Figure 4.19).

Convergence of the update algorithm is shown in Figure 4.20. The fraction of

convergence points changing sign between successive iterations is plotted against the

iteration number. Both the actual ∆k values, and the fitted exponential curve are

shown.
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Figure 4.18: Arch problem. The left and right figures show the initial and final
updated SVM decision functions constructed with 10 and 48 samples respectively.

Figure 4.19: Arch problem. Comparison of SVM decision functions constructed
using update algorithm and otherwise. The dark brown and light grey surfaces in
the left figure are the decision functions using 48 LCVT samples and the update
algorithm respectively. The deep blue surface in the right figure is the decision
function constructed with 150 LCVT samples.

4.5.4 Example 4.4: Tolerance optimization for multibody system with multiple

failure modes

In this section, an example of RBDO using SVM boundaries is presented. This

example was formulated in the Masters thesis of Henry Arenbeck (Arenbeck, H.
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Figure 4.20: Arch problem. Convergence of the update algorithm.

(2007)). A portion of the work, concerning the construction of an adaptively refined

SVM failure boundary, was performed as part of this dissertation. Therefore,

only a brief summary of the problem is provided. Further details can be found in

Arenbeck, H. et al. (2010).

The system considered is a web cutter mechanism (Figure 4.21) with multiple

failure modes.

Figure 4.21: Web cutter mechanism.
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Design variables are the lengths of members AQ (1), AB (2), and OB (3) as well

as their respective tolerances. Lengths of the members are considered as random

variables with truncated normal distributions. Width of the distributions are given

by the respective tolerances. The tolerances are equal to two standard deviations

of the corresponding link length distributions. The objective is to reduce the cost

while maintaining certain target reliability. The cost is assumed to be a function of

the tolerances only (inversely related). The optimization problem is:

min
x̄,t

C(t)

s.t. Pf ≤ PT

x̄ ∈ [x̄min, x̄max]

t ∈ [tmin, tmax] (4.23)

where the target failure probability PT is 5 × 10−4. Failure is defined based on

several criteria, such as stress, gap between the cutting blade edges, maximum web

displacement, required working space etc. In total, there are 12 failure modes shown

in Figure 4.22. The net failure domain is union of the individual ones. Ranges of

the three link lengths are x̄1 ∈ [0.091, 0.11], x̄2 ∈ [0.682, 0.729], x̄3 ∈ [0.986, 1.013].

Ranges of the respective tolerances are t1 ∈ [10−5, 0.016], t2 ∈ [10−5, 0.037] and

t3 ∈ [10−5, 0.019].

An initial set of 40 LCVT samples is distributed uniformly over the three di-

mensional space consisting of x1, x2 and x3. All the variables are scaled by their

maximum values for constructing the SVM. The initial SVM boundary constructed

with the LCVT samples is updated using adaptive sampling (Basudhar, A. and Mis-

soum, S. (2008)). The final SVM boundary is constructed with 178 samples. Width

parameter of the Gaussian kernel used for this example is automatically selected

at each iteration, as mentioned in Section 3.1.3. A width parameter of 0.1 is used

to construct the final SVM limit state function (Figure 4.23). In the figure, the

large dots represent the samples used for training of the SVM-function. The small

dots represent the falsely classified samples of a large reference dataset consisting
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Figure 4.22: Failure modes of the web cutter and the net safe domain.

of 105 samples. These samples provide a measure of the error of the approximated

limit state function. It is noticeable that the adaptive sampling scheme successfully

yielded an increased sampling density in the vicinity of the limit state while avoiding

clustering effects. The error of SVM classification is calculated to be 3.4%. It should

be noted that an older version of the update algorithm is applied that does not have

secondary samples. The accuracy is expected to be higher when the current update

scheme consisting of both primary and secondary samples is used.

Although the SVM boundary is constructed in a three dimensional space con-

sisting of the member lengths, the RBDO problem is defined with respect to six

variables. This is because the remaining variables are the tolerances related to the

same physical entities, i.e. the member lengths. For any configuration in the six

dimensional space, the probability density functions of x1, x2 and x3 are uniquely

defined, with the tolerances defining the standard deviations. Therefore, the proba-
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Figure 4.23: Tolerance Optimization Example. Failure boundary approximation
using SVM.

bility of failure at any configuration in the six dimensional space can be calculated

using the three dimensional SVM boundary. The probability of failure is calculated

using MCS (Equation 2.51). To perform the RBDO, the probability of failure is

calculated at 1000 uniform samples. These probabilities of failure are converted to

the respective reliability indices β:

β = −Φ−1(Pf ) (4.24)

The reliability indices are then fitted to a surface using support vector regression

(SVR) to get an analytical expression for β. The RBDO problem is then solved as:

min
x̄,t

C(t)

s.t. βT − β̂ ≤ 0

x̄ ∈ [x̄min, x̄max]

t ∈ [tmin, tmax] (4.25)

where βT is the target reliability index (equal to 3.29) and β̂ is the approximation

of β using SVR. Details of the optimum results are omitted to avoid deviation from
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the main message of this chapter, i.e. the construction of SVM. Details can be

referred in Arenbeck, H. et al. (2010).

4.6 Discussion

This section presents a discussion on some of the features of EDSD and the SVM

update. The effects of the sampling scheme on the update, as well as some possible

improvements are discussed.

• Application of EDSD to discontinuous responses and multiple failure modes:

The major difference in this dissertation compared to existing reliability as-

sessment and optimization techniques is the use of a classification-based ap-

proach. The nonlinear arch buckling example with discontinuous responses

demonstrates one of the major advantages of such an approach. The pres-

ence of discontinuities makes the application of response surface methods or

other conventional methods difficult or inaccurate. However, the SVM-based

method is undeterred by discontinuities, and it provides an explicit equation

of the failure boundary that can be used for probabilistic optimization of the

arch (Basudhar, A. et al. (2008)). The calculation of the probability of failure

using MCS is made efficient, once the explicit SVM boundary is constructed.

The value of indicator function in MCS (Equation 2.51) is obtained from the

sign of SVM value s(x) (Equation 3.16), and does not require actual expen-

sive function evaluations. In addition to discontinuities, the EDSD method

can also handle binary states and multiple failure modes. The limit state

function for the tolerance optimization example is approximated with a single

SVM. However, the problem has several failure modes that will hamper the

conventional approximation methods.

• SVM locking and convergence of the update: The “SVM locking” phenomenon

(Figure 4.7) results in a low rate of convergence of the SVM to the actual
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boundary in localized regions of the space. It is noteworthy that although the

term “SVM locking” may suggest that it entirely “stops” the SVM update,

in reality, the update is believed to be convergent even without the locking

removal step (secondary sample evaluation). However this would require a

large number of samples, which would defeat one of the main purposes of

the adaptive sampling scheme. The use of secondary samples enables one

to reduce the number of necessary samples by efficiently reducing the local

locking phenomena whose removal would otherwise require many function

calls.

Another noteworthy feature of the locking phenomenon stems from the fact

that it is a local phenomenon. For this reason, there might not always be a

clear difference between the global convergence rates of the proposed scheme

and the adaptive sampling scheme without secondary samples. However,

these local errors in the SVM boundary construction might have a significant

influence on the optimum solution or the probability of failure calculated using

the SVM boundary. Therefore, it is important to remove the locking using

secondary samples. Also, it is expected that the locking phenomenon may

have a greater influence on the global convergence rate in higher dimensions.

This needs a detailed study in the future.

• Selection of secondary samples: In this chapter, secondary samples are

selected using the method 1 explained in Section 4.4.1. That is, the center of

hypersphere, within which the sample lies, is selected as one of the support

vectors. As explained in Section 4.4.1, this may ignore some regions of the

space. Using the method 2 of selecting secondary samples within the global

update scheme is expected to improve its efficiency. This method will be

used in the following chapters within other adaptive sampling frameworks

(Chapters 5 and 7).
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• Optimization of the sampling sequence: Although the proposed sampling

scheme has the ability to provide accurate decision boundary approximations,

there is scope for further improvement of the approach. The frequency of

evaluating secondary samples is not optimized in this work; there is no scheme

to detect whether or not a secondary sample is required. Therefore, secondary

samples are selected systematically (one for every two primary samples) in

regions that are most likely to require a secondary sample. Such regions are

identified as the ones where data from one class is sparse in the vicinity of

the boundary. A scheme to detect whether a secondary sample needs to be

evaluated may be useful. Such a scheme may be devised based on a critical

distance from existing samples. However, ways to define the critical distance

need to be studied.

• Choice of the kernel: As mentioned in Section 4.4.2, the polynomial kernel

allows for a rigorous convergence measure based on the polynomial coeffi-

cients. However, the polynomial kernel is not necessarily superior to other

kernels, such as the Gaussian kernel, in terms of the number of evaluations.

If a Gaussian kernel is used, the convergence criterion based on “convergence

points” may be used. However, the approach is not scalable, as filling the

space with samples is possible only up to a few dimensions. A polynomial

coefficient-based convergence criterion may be used with the Gaussian kernel

by expanding it on a polynomial basis. However, the number of terms in the

expansion of the Gaussian kernel may be crucial and needs to be studied. In

terms of the methodology to select new samples, the update scheme is same

irrespective of the kernel.
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4.7 Concluding remarks

4.7.1 Summary

A novel method for explicit construction of decision boundaries (limit state func-

tions and constraint boundaries) referred to as explicit design space decomposition

(EDSD) is presented in this chapter. A machine learning technique referred to

as support vector machines (SVMs) is used to construct the boundaries. The

technique is particularly useful for problems exhibiting discontinuous and binary

responses, disjoint failure domains, and multiple failure modes.

An adaptive sampling scheme for updating SVM decision boundaries is also

developed. The ability of the method to accurately reconstruct analytical functions

has been demonstrated for problems up to seven dimensions. The results from

the application of the approach to highly nonlinear examples of up to seven

variables are promising. The examples consist of decision boundaries that form

multiple disjoint regions in the space. An arch buckling example with discontinuous

responses is also presented. Application to multiple failure modes is also presented

through the tolerance optimization example. The EDSD method presented in this

chapter is the basic building block for the more advanced methods presented in

latter chapters. While the update scheme in this chapter is global, a local update

to further reduce the number of samples, and to make the method more scalable is

presented in the next chapter.

4.7.2 Future work

The adaptive sampling scheme presented in this chapter could benefit from some

relatively minor incremental changes as mentioned in the discussion section. Im-

provements to further reduce the number of samples are being considered. Specif-

ically, a scheme to detect whether a secondary sample needs to be evaluated may

be useful. The use of multifidelity models and competing approximations may also
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be useful for the update. Also, the polynomial kernel has been used in this work

as it provides a rigorous convergence criterion based on the polynomial coefficients.

In the future, the method will be generalized by enabling the use of the polynomial

coefficient based convergence criterion for the Gaussian kernel, as explained in the

discussion section.
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CHAPTER 5

RELIABILITY-BASED DESIGN OPTIMIZATION USING LOCALLY REFINED

SVMs

In Chapter 4, an introduction to the SVM-based EDSD method was provided, along

with a global update scheme to refine SVM boundaries. The use of updated SVM

boundaries for reliability assessment and RBDO was also demonstrated. However,

it is natural that the number of samples required for an accurate SVM will increase

with the dimensionality. Therefore, to make the approach more scalable, a method

to locally update SVM boundaries for RBDO is presented in this chapter (Basudhar,

A. and Missoum, S. (2009a)). First, an adaptive sampling technique is proposed in

order to construct an explicit limit state function approximation and obtain an

accurate probability of failure (Section 5.1). This reliability assessment technique

is then used as part of an RBDO algorithm in Section 5.2. The RBDO algorithm

is based on the definition of two explicit boundaries - one for the approximation

of the limit state function (LSF) and one for the approximation of the zero-level

contour of probabilistic constraint. These boundaries are refined within a local

“update region” whose size and position are modified iteratively. Finally, analytical

examples to validate the methods are presented in Section 5.3.

5.1 Adaptive sampling for probability of failure calculation

It has already been demonstrated in Chapter 4 that EDSD can be used to gener-

ate explicit LSFs and calculate probabilities of failure. The calculation of failure

probabilities with explicit LSF approximations is straightforward using Monte-Carlo

simulations (MCS) (Section 4.2). However, the LSF approximations using the previ-

ously presented method could lead to substantial errors in the probability estimates.

In this section, an adaptive sampling scheme dedicated to calculating accurate prob-
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abilities of failure is presented. The proposed algorithm generates an accurate ap-

proximation of the LSF within a hyperbox whose bounds are defined based on the

probability density functions (pdfs) of the variables. For example, for a variable

with truncated distribution, the bounds of the hyperbox for the corresponding di-

mension are given by the lower and upper bounds of the pdf. Within this region,

the probability of failure is assessed as summarized in Algorithm 5.1. Three types

of samples are used as part of the adaptive scheme. The sample selection steps are

explained in Section 5.1.1, following Algorithm 5.1.

Algorithm 5.1: probability of failure calculation

1: Define region for updating the LSF (based on the pdfs of the random variables).

2: Set k = 0

3: Construct the initial SVM approximation of the LSF (s
(0)
d = 0) using samples

from a CVT DOE in the selected space.

4: Calculate the initial probability of failure estimate P
(0)
f with the SVM approxi-

mation, using MCS (Equation 4.1).

5: repeat

6: k = k + 1

7: Adaptively select new samples using the three sample selection steps in Section

5.1.1, in order to refine the SVM approximation. Reconstruct SVM after each

step.

8: Calculate the new probability of failure P
(k)
f .

9: until

∣∣∣P (k)
f −P

(k−1)
f

∣∣∣
P

(k−1)
f

≤ δ1 for d+ 1 consecutive iterations
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5.1.1 Sample selection steps for the update of probability of failure

The sample selection steps for updating the SVM LSFs are described in this

Section. For the sake of clarity, the major points of the algorithm are presented

while details are described in Appendix A.

Step 1: Primary sample (xmm) on the SVM boundary with maximum minimum

distance from existing training samples

In step 1, a primary sample is selected within the update domain determined based

on the PDFs of the random variables. Details of the method were presented in

Chapter 4 (Equation 4.4). Selection of primary samples on the SVM boundary has

been shown to be quite effective in updating the boundary in Chapter 4, as they

lie in sparse regions with high probability of misclassification. Also, being located

within the margin, they are bound to modify the SVM.

Although a primary sample (xmm) is bound to modify the SVM, the extent of

this change may be negligible. In order to avoid unnecessary function evaluations,

changes in SVM boundary are evaluated based on the probabilities calculated using

MCS. These variations are calculated under the two hypothesis that the sample

belongs to one class or the other. If one of these changes leads to a large variation

of the probability of failure, then the sample is actually evaluated. Details are given

in the Appendix A.

Step 2: Secondary sample xs to remove SVM locking

Similar to the global update algorithm, a secondary sample to remove SVM locking

(see Chapter 4) is evaluated. The method 2 for selecting secondary samples

(Equations 4.7-4.9) is used. As was explained in Chapter 4, unlike method 1, the

secondary samples selected using this improved method are not limited to regions

surrounding existing support vectors.
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Step 3: Sample at closest point on the SVM boundary from the mean

In step 3, a sample is selected at the closest point to the mean that lies on the

SVM boundary (Figure 5.1). In a standard normal space, this sample is the “most

probable point (MPP)”. Such a point close to the mean has high probability density

and a small change in the SVM in that region can cause a significant variation in

the failure probability. Therefore, this step intends to have high accuracy of the

SVM boundary in regions close to the mean. It must be understood that this

sample becomes the actual MPP at convergence of the boundary only if the space

is standard normal. The optimization problem is:

min
x

||x− x0||

s.t. s(x) = 0, (5.1)

where x0 is the mean at which probability of failure is calculated. In order to reduce

the number of function evaluations, the sample is evaluated only if the maximum

possible change in the failure probability due to its evaluation is greater than 1%

of the current estimate. The maximum change is evaluated by considering the two

cases with class label +1 or −1 for the selected sample.

5.2 RBDO using locally refined SVMs

An adaptive sampling methodology for performing RBDO using locally refined SVM

boundaries is presented in this section. Global update of SVMs for RBDO can

require a large number of samples for accurate failure probabilities, especially for

problems with high dimensionality. Therefore, in the method presented in this

section, SVM boundaries are updated locally within an “update region”. The RBDO

problem is defined as:

min
x̄

f(x̄)

s.t. P (x ∈ Ωf ) ≤ PT , (5.2)

where x̄ is the mean value of x, f(x̄) is the objective function, P (x ∈ Ωf ) is the

probability of failure and PT is the target failure probability.
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Figure 5.1: Change in the SVM boundary due to the evaluation of the closest point
on the boundary. The closest point on the boundary is the MPP in a standard
normal space.

A salient feature of the proposed RBDO methodology is the use of two SVM

decision boundaries. One boundary (sd = 0) approximates the limit-state g (x) = 0

that defines the failure region Ωf . The other SVM (sp = 0) represents the zero-level

of the probabilistic constraint (P (x ∈ Ωf ) − PT = 0 or Pf − PT = 0). The

construction of an accurate sd is important for locating the deterministic optimum

xd and correctly calculating the failure probabilities. The construction of sp is

important to locate the probabilistic optimum xp. Both the SVMs are important

throughout the update to account for both deterministic and probabilistic optimum

positions while guiding the sample selection. It should be noted that while defining

the boundary sd = 0 requires (expensive) function evaluations at the training

samples, the classification information for constructing sp = 0 is easily available.

Once the approximated boundary sd = 0 is constructed, it can be used to calculate

the failure probability Pf at any sample. It is therefore straightforward to classify

the samples based on the sign of Pf −PT . The initial predictions of both sp = 0 and

sd = 0 are built using CVT DOEs. The SVM boundaries and the corresponding



137

optima (xd and xp) are updated with an adaptive scheme. The new samples for

the update are selected within a local “update region” which is modified iteratively

based on the optima.

The update is performed in two phases. The motivation is to reduce the number

of samples while providing a final accurate result. The initial SVM approximation

can be quite different from the actual function, thereby predicting a solution that

is far from the actual optimum. Therefore, the first step is to find an approximate

location of the optimum without wasting too many samples (phase 1). Phase

1 update is performed with relatively crude estimates of failure probabilities.

However, a high accuracy is required for the final solution. Therefore, phase 1 is

followed by a more rigorous update in phase 2. In phase 2, the failure probability at

each iterate is calculated accurately using the update scheme developed specifically

for the calculation of probabilities of failure (Algorithm 5.1). However, because the

phase 2 update starts from a relatively good starting point (solution of phase 1), it

is expected to require fewer steps to converge to the optimum. The convergence of

the RBDO is based on the positions of xd and xp. The actual interest while solving

the RBDO lies in the probabilistic optimum xp, which is the basis for convergence

of phase 2 update. However, because phase 1 update is based on relatively crude

failure probability estimates, its convergence is based on the position of xd.

Summary of the RBDO methodology is given in Algorithm 5.2. The definition of

two SVM boundaries and modification of the update region are shown conceptually

in Figures 5.2 and 5.3.

Algorithm 5.2: RBDO Algorithm

1: Define the range of variables (extended beyond the optimization side constraints

based on the probability density functions of the random variables).
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2: Construct the initial SVM approximation s
(0)
d of the LSF g(x) = 0 using samples

from a CVT DOE in the selected space.

3: Construct the initial SVM approximation s
(0)
p which corresponds to the points

of the design space for which P
(0)
f = PT :

• Generate another (comparatively dense) CVT DOE and calculate the ini-

tial failure probability estimate P
(0)
f , using MCS, at each sample with the

SVM approximation. It is noteworthy that this step does not require ac-

tual function evaluations.

• Classify these samples as ±1, based on whether P
(0)
f > PT or P

(0)
f ≤ PT .

4: Find the initial deterministic and probabilistic optima x
(0)
d and x

(0)
p using the

SVM boundaries s
(0)
d = 0 and s

(0)
p = 0 respectively.

5: Set iteration k = 0.

6: repeat

7: Phase 1 update: Define local update region for selection of new samples based

on the optima. Select new samples for the refinement of SVM boundary

s
(k)
d = 0 (Section 5.2.1).

8: Refine SVM boundary s
(k)
p = 0 (Appendix A).

9: Set k = k + 1.

10: Update x
(k)
d and x

(k)
p using the new SVM boundaries s

(k)
d = 0 and s

(k)
p = 0

respectively.

11: until
∣∣∣
∣∣∣x(k)

d − x
(k−1)
d

∣∣∣
∣∣∣ ≤ ε1

12: repeat

13: Phase 2 update: probability of failure calculation at x
(k)
p using Algorithm 5.1.

This leads to further refinement of s
(k)
d = 0.

14: Reconstruct SVM boundary s
(k)
p = 0.

15: Set k = k + 1.

16: Find the updated probabilistic optimum x
(k)
p using the boundary s

(k)
p = 0.

17: until
∣∣∣
∣∣∣x(k)

p − x
(k−1)
p

∣∣∣
∣∣∣ ≤ ε1
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Figure 5.2: SVM approximations for the LSF and the probabilistic constraint in
RBDO. The left figure shows the approximation sd = 0 (green curve) for the LSF
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curve) for the probabilistic constraint. The failure probabilities for the construction
of sp = 0 are calculated based on the SVM LSF sd = 0.
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Figure 5.3: Modification of the update region based on the optima. The left figure
shows the current deterministic and probabilistic optima x

(k)
d and x

(k)
p . The right

figure shows the update region. The dashed circle is the previous update region cen-
tered at the previous deterministic optimum x

(k−1)
d and circle with solid line is the

new update region centered at the current optimum x
(k)
d . The update region encom-

passes the current probabilistic optimum and the previous deterministic optimum.

5.2.1 Phase 1 update - local update region and sample selection steps

The SVM boundaries (sp = 0 and sd = 0) are refined only within a region of

interest which, in the first phase, is not related to the probabilistic distributions

of the variables. New samples are added within the update region to update the

boundaries and the corresponding optima. For the first iteration (k = 0), the
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entire space is the update region. Subsequently, the update region for phase 1 is a

hypersphere of radius R
(k)
u centered at x

(k)
d defined as:

R(k)
u = max

(
∆x

(k)
d ,
∣∣∣
∣∣∣x(k)

d − x+1

∣∣∣
∣∣∣ ,
∣∣∣
∣∣∣x(k)

d − x−1

∣∣∣
∣∣∣ , 1

2

(
V

N

) 1
d

,
∣∣∣
∣∣∣x(k)

d − x(k)
p

∣∣∣
∣∣∣
)
,

(5.3)

where ∆x
(k)
d =

∣∣∣
∣∣∣x(k)

d − x
(k−1)
d

∣∣∣
∣∣∣, x+1 and x−1 are the closest samples from x

(k)
d

belonging to the +1 and -1 classes and V is the volume of the space. Therefore,

the size of the update region is defined so as to include the optima x
(k−1)
d and x

(k)
p ,

as well as at least one sample belonging to each class. The sample selection steps

are listed below:

Step 1: Evaluate the deterministic optimum x
(k)
d .

min
x

f(x)

s.t. s
(k)
d (x) ≥ 0 (5.4)

Step 2: Evaluate the probabilistic optimum x
(k)
p .

min
x

f(x)

s.t. s(k)
p (x) ≤ 0 (5.5)

Step 3: Evaluate the closest point to x
(k)
p lying on s

(k)
d = 0.

Step 4: Evaluate sample with maximum minimum distance from existing training

samples, lying on the decision function sd = 0 within the update region. This is

similar to Equation 4.4, except for an additional constraint of the spherical update

region.
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Step 5: Select a secondary sample for SVM locking removal using the steps in

Equations 4.7-4.9, similar to the step 2 of the probability of failure update (Section

5.1.1). However, there is an additional constraint of the local spherical update

region.

5.2.2 Phase 2 update

In the phase 2 update, the probability of failure is calculated at x
(k)
p with the update

methodology presented in Section 5.1. In this RBDO context, the variable ranges

(i.e., the dimensions of the hyperbox) are twice of that used for a simple calculation

of failure probability at a given point. This is done in order to obtain an accurate

sp boundary constructed from MCS-based probabilities of failure at the samples.

The calculation of failure probability using the adaptive sampling technique leads to

further refinement of the LSF s
(k)
d = 0 around the mean x

(k)
p . As shown in Algorithm

5.2, the phase 2 update is repeated until the probabilistic optimum converges.

5.3 Examples

Three examples with analytical LSFs are shown in this section to demonstrate

the efficacy of the proposed update methodology. The first two examples show

the calculation of failure probability at a given point while the third example

presents an RBDO problem with two critical failure modes. The analytical decision

functions are written in the form g(x) = 0. In order to construct the SVM failure

boundary, the samples corresponding to g(x) > 0 and g(x) ≤ 0 are considered as

belonging to safe (+1) and failed (−1) classes respectively.

For all examples, SVM boundaries are constructed using the polynomial kernel.

Degree of the polynomial is automatically selected as explained in Chapter 4. For

the probability of failure update, 106 samples are used for MCS. This allows for

approximately 5% error in the calculation for failure probabilities of order 10−3 that

are treated in this chapter. In order to verify the accuracy of the final probability of
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error, the failure probabilities are also calculated using the known analytical LSFs.

107 MCS samples are used to compare the final values, as this allows for only 2%

error due to MCS variance. The convergence criterion δ1 as well as δ2 (Appendix

A) for the probability of failure update are varied within a reasonable range to

study the effect of these parameters on the results.

The following notation will be used in the results section:

• Ni is the initial training set size.

• Nt is the total number of samples required at the end of the update.

• fopt is the optimum objective function value.

• P SVM
f is the probability of failure using the SVM LSF.

• P act
f is the probability of failure using the actual function.

• ∆
(k)
Pf

is the convergence measure for P SVM
f , that is the maximum relative

change in P SVM
f between successive iterations over d + 1 consecutive itera-

tions.

• E(k)
Pf

is relative error in P SVM
f with respect to P act

f .

5.3.1 Probability of failure. Example 5.1

The actual decision function in this example is a function of two random variables x1

and x2. Both the variables have standard normal distributions. The variable ranges

for the update are chosen as four standard deviations ([−4, 4]). The equation of the

LSF is:

g(x1, x2) = (5x1 + 10)3 + (5x2 + 9.9)3 − 18 = 0 (5.6)

The probability of failure P act
f with the actual LSF is calculated to be 5.7×10−3 using

MCS. The 95% confidence interval (CI) for this MCS estimate is [5.6, 5.8] × 10−3.
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The initial SVM is constructed using 10 CVT samples. Effect of the convergence

parameter δ1 on the update is studied. The parameter δ2 (Appendix A) is varied

between 0.1% and 5%. The results are listed in Tables 5.1-5.3. Figure 5.4 shows the

initial SVM, the updated SVM with δ1 = δ2 = 5× 10−3 and the actual LSF.
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Figure 5.4: Example 5.1. Failure probability calculation at the origin for a two-
dimensional non-convex LSF. The red curve represents the actual LSF. The green
curves in left and right figures show the initial and final SVM approximations.

δ2 Nt P SVM
f EPf P SVM

f 95% CI

0.001 75 5.8× 10−3 1.6% [5.7, 5.8]× 10−3

0.005 59 5.6× 10−3 2.2% [5.5, 5.6]× 10−3

0.01 78 5.7× 10−3 0.7% [5.7, 5.8]× 10−3

0.05 70 6.0× 10−3 4.7% [5.9, 6.0]× 10−3

Table 5.1: Results for Example 5.1. δ1 : 0.001

5.3.2 Probability of failure - example 5.2

This example presents the probability of failure calculation with an LSF consisting

of three random variables x1, x2 and x3. All the variables have standard normal

distributions. The variable ranges are selected as [−4, 4]. The equation of the LSF
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δ2 Nt P SVM
f EPf P SVM

f 95% CI

0.001 54 5.5× 10−3 2.7% [5.5, 5.6]× 10−3

0.005 79 5.8× 10−3 2.1% [5.8, 5.9]× 10−3

0.01 72 6.0× 10−3 4.9% [5.9, 6.0]× 10−3

0.05 70 6.0× 10−3 5.4% [6.0, 6.1]× 10−3

Table 5.2: Results for Example 5.1. δ1 : 0.005

δ2 Nt P SVM
f EPf P SVM

f 95% CI

0.001 62 6.1× 10−3 7.8% [6.1, 6.2]× 10−3

0.005 60 6.1× 10−3 7.2% [6.1, 6.2]× 10−3

0.01 77 6.0× 10−3 5.1% [5.9, 6.0]× 10−3

0.05 60 6.1× 10−3 7.9% [6.1, 6.2]× 10−3

Table 5.3: Results for Example 5.1. δ1 : 0.01

is:

g(x1, x2, x3) = (5x1 + 10)3 + (5x2 + 9.9)3 + (5x3 + 5)3 − 18 = 0 (5.7)

The probability of failure P act
f using the actual LSF is 3.9×10−3. The 95% confidence

interval for P act
f is [3.9, 4.0] × 10−3. The initial SVM constructed with 40 CVT

samples, the updated SVM with δ1 = δ2 = 10−3 and the actual function are shown

in Figure 5.5. The convergence parameter δ1 is set equal to 10−3 and δ2 is varied

from 0.1% to 5% to study its effect. The results are listed in Table 5.4. Figure 5.6

shows the convergence of the probability of failure ∆Pf and the relative error EPf .

δ2 Nt P SVM
f EPf P SVM

f 95% CI

0.001 180 3.9× 10−3 1.0% [3.8, 3.9]× 10−3

0.005 120 4.2× 10−3 8.2% [4.2, 4.3]× 10−3

0.01 190 4.1× 10−3 4.3% [4.0, 4.1]× 10−3

0.05 201 4.1× 10−3 5.6% [4.1, 4.2]× 10−3

Table 5.4: Results for Example 5.2. δ1 : 0.001
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Figure 5.5: Example 5.2. Failure probability calculation at the origin for a three-
dimensional non-convex LSF. The red surface represents the actual LSF. The green
surfaces in left and right figures show the initial and final SVM approximations.
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Figure 5.6: Example 5.2. Convergence (left) and relative error (right) of the proba-
bility of failure.
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5.3.3 Example 4.3. RBDO example with two failure modes

This section presents a two-dimensional RBDO problem:

min
x̄

2x̄1 + x̄2

s.t. Pf = P (x ∈ Ωf ) ≤ PT

0 ≤ x̄1 ≤ 10

0 ≤ x̄2 ≤ 10, (5.8)

where the failure domain Ωf is the union of the regions defined by two inequalities

(that is, two failure modes (Figure 5.7)):

Ωf1 : −x1 + 2x2 + 2 ≤ 0

Ωf2 : −x2
1 + 6x1 + x2 − 8 ≤ 0 (5.9)
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The target failure probability is PT = 10−3. Both variables x1 and x2 have nor-

mal distributions with standard deviation of 0.2. As explained in the methodology

section, the ranges of both variables for the update are taken as [−0.8, 10.8] in order

to improve the accuracy of the failure probabilities at the design space boundaries.

The initial DOE for sd consists of 10 CVT samples. The training set for sp consists

of additional 40 CVT samples. However, it should be noted that the added samples

for sp do not require actual function evaluations. The value of ε1 for convergence

is set to 0.05. For the phase 2 update, δ1 and δ2 are set equal to 5 × 10−3. Evo-

lution of the objective function and constraint violation at the iterates, and the

distances between successive iterates x
(k)
p and x

(k−1)
p are plotted in Figure 5.8. The

results obtained after the end of phase 1 and phase 2 are given in Table 5.5. Figure

5.9 shows the updated SVM and the final optimum solution. In order to validate

the usefulness of performing the update in two phases, the results of the proposed

method are compared to an alternate scheme without the phase 1 update. The

objective function values and constraint violations are compared at specific number

of function evaluations using the two methods (Table 5.6).
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Figure 5.8: Example 5.3. Convergence of the distance between successive optima
(left). Objective function and constraint violation (right) at xp. Objective function
values are scaled by the maximum value among all iterations.
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Figure 5.9: RBDO example. The left and right figures show the entire design space
and the magnified region around xp (final phase 2 update region). The ±4σ region
around xp is also shown with the dashed brown lines.

Update stage Ni Nt xp fopt P SVM
f P act

f

phase 1 10 70 (2.136, 1.129) 5.397 10−3 2.6× 10−3

phase 2 70 88 (2.262, 0.969) 5.493 10−3 10−3

Table 5.5: Results for RBDO problem. Optimum solutions after phase 1 and phase
2 of the algorithm.

Evaluations 2-phase f(xp) 2-phase P act
f (xp) 1-phase f(xp) 1-phase P act

f (xp)

25 5.697 0.97 3.765 0.82
50 5.509 10−3 4.22 1.0
75 5.397 2.6× 10−3 6.082 3.0× 10−4

88 5.493 10−3 − −
100 − − 5.502 9.0× 10−4

113 − − 5.506 10−3

Table 5.6: Comparison of the proposed two-phase RBDO update to a scheme con-
sisting of the phase 2 update only.

5.4 Discussion

The results in Section 5.3 show the efficacy of the update schemes to calculate

probabilities of failure and to perform RBDO. The RBDO problem presents an
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example of two critical failure modes. The use of the proposed classification-based

approach presents an efficient method of handling multiple failure modes with a

single SVM. This section presents a discussion on certain features of the update

strategies.

• Effect of performing RBDO in two phases: As mentioned in the methodology

section the objective of performing the RBDO update in two phases is

to reduce the number of samples while retaining high accuracy. This is

supported by the results in Table 5.6. The phase 1 update locates an

approximate position of the optimum using limited samples. The region in

the vicinity of the optimum is then further refined in phase 2 to provide

accurate failure probabilities. On the contrary, if the phase 1 update is

absent then more samples are required to obtain the final solution. This is

because a comparatively larger number number of samples is spent during

the initial iterations to refine regions of space that may be far from the

optimum. The difference between the two methods is quite remarkable at the

50 and 75 function evaluation marks (Table 5.6). One of the consequences

of locally refining the SVM and using relatively crude failure probabilities in

phase 1 is that the global optimum may be missed in certain cases. That is,

however, considered an acceptable risk with the objective of reducing function

evaluations.

• Effect of update scheme parameters: The effect of parameters of the algorithm

on the failure probability update is studied in Sections 5.3.1 and 5.3.2. The

values of δ1 and δ2 are both varied between 0.1% to 5% for Example 5.1.

The results suggest that value of more than 1% is too high or loose for the

convergence criterion δ1. The error increases for a higher value of δ1, as

expected. Increase in δ2 for a fixed δ1 also increases the error in general, for

this example. For Example 5.2, the convergence parameter δ1 is set equal to
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10−3 and δ2 is varied between 0.1% to 5%. However, no clear trend in the

error variation with respect to δ2 is seen in this case. The results of the two

examples show that setting δ1 = δ2 ≤ 5 × 10−3 provides reasonably accurate

results.

• Effect of Monte-Carlo samples: The calculation of failure probabilities

is performed using MCS. Failure probabilities are used to calculate the

convergence measure during probability of failure update as well to construct

the SVM sp during the RBDO update. Therefore a high accuracy is required.

106 samples are used in this chapter, which allows an error of approximately

5% while calculating probabilities of the order 10−3, based on 95% confidence

level. The final probabilities are calculated using 107 MCS samples to provide

a more accurate result. This allows for only 2% error for probabilities of

order 10−3. However, using 107 samples throughout the update can be time

consuming and is avoided. An improvement to the proposed method can be

obtained by using variance reduction techniques. Another important thing

to note is that the MCS samples are not regenerated at every iteration.

Instead, the same set of samples is used to calculate the probability at a given

point. This is done in order to avoid confusing the change due to the SVM

refinement and due to MCS error.

• Looping of SVM: Looping of SVM is a phenomenon that may occur in regions

with lack of data. It leads to an additional artificial boundary, in the form

of a loop, thus leading to potential misclassification of the space. Although

such regions are efficiently identified and removed using the secondary sam-

ples, repeated occurrence of looping can lead to the waste of several function

evaluations. Also, if looping occurs in a region with high probability content,

it can lead to very high variations in the probability of failure, thus prolonging

the convergence of the update. Such phenomenon is evident in the error plot
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for Example 5.1 demonstrated in Figure 5.10. Removal of looping is a current

issue that, if solved, can reduce the number of function evaluations for the

update. One option is to populate certain regions of the space with dummy

samples; however, such an approach has risks associated. Looping of SVM is,

therefore, still an open issue that needs resolution in the future.
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Figure 5.10: SVM looping in Example 5.1. The right figure shows the error with
peak corresponding to looping. Square root is used to compress the plot for better
visualization.

5.5 Concluding remarks

5.5.1 Summary

A methodology for failure probability calculation and RBDO is presented in this

chapter. The methodology is based on the definition of explicit limit state functions

using adaptively refined SVMs, and is applied to two and three-dimensional

analytical problems. The probability of failure update scheme is implemented for

predicting failure probabilities with highly nonlinear limit state functions. Efficacy

of the proposed RBDO method is demonstrated using an example with two failure

modes. The two limit state functions are represented by a single SVM boundary,

which is refined through adaptive sampling. The decision boundaries for RBDO
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are updated locally, which avoids function evaluations in the unimportant regions

of the design space.

5.5.2 Future work

In the method presented in this chapter, limit state function evaluation is consid-

ered expensive whereas objective function evaluation is considered to be inexpen-

sive. Possible improvements to the method include extension to expensive objective

functions in the future. An approach similar to a deterministic optimization method

presented in Chapter 7 can be used for this purpose. It is also possible to use PSVMs

for the selection of samples. Specific criteria to identify intersections of limit state

functions corresponding to different failure modes may also be used. One method to

identify such regions could be based on the radius of curvature of the SVM bound-

ary. In the future, the method will be applied to higher dimensional problems with

several failure modes.
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CHAPTER 6

RELIABILITY ASSESSMENT WITH MODIFIED PROBABILISTIC SUPPORT

VECTOR MACHINES

In Chapter 4, the SVM-based EDSD method was introduced for limit state function

approximation. Adaptive sampling techniques to enhance the accuracy of SVM

boundaries were also presented in Chapters 4 and 5. However, in these methods,

no attempt was made to quantify the prediction error of SVMs (except for known

analytical functions). SVM-based limit-state functions may not always be accurate

as they depend on the sampling, therefore leading to erroneous probability of

failure estimates. This can be especially harmful if the probability of failure is

underpredicted, as this may lead to an unsafe design. Considering the probability

of misclassification by the SVM is, therefore, important. The method presented

in this chapter quantifies the accuracy of the SVM classification model, using a

probabilistic support vector machine (PSVM), and propagates this information to

the calculation of the probability of failure. This modified, MCS-based, measure

of probability, is constructed so that it is always more conservative compared to

the probability of failure based on a deterministic SVM. Therefore, some of the

consequences of an inaccurate limit-state function approximation are mitigated.

The probability of failure estimate is based on a new sigmoid-based PSVM model

along with the identification of a region where the probability of misclassification

is large.

The organization of this chapter is as follows. Section 6.1 presents the PSVM-

based reliability assessment method. Formulation of the failure probability account-

ing for the probability of misclassification by the SVM is explained in this section.

Section 6.2 provides an overview of the conventional PSVM model and its limita-

tions. In Section 6.3, the modified distance-based PSVM (DPSVM) model proposed
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to overcome these limitations is presented. An error measure to compare the PSVM

models is provided in Section 6.4. Finally, analytical test examples are presented in

Section 6.5 to show the efficacy of the proposed method, followed by a discussion in

Section 6.6.

6.1 Reliability assessment using probabilistic support vector machines (PSVMs)

In chapters 4 and 5, the methodology of calculating probabilities of failure using

SVMs, based on MCS, was presented. The basic idea is to construct an explicit

approximation of the failure boundary using SVM. The probability of failure based

on a deterministic SVM is calculated using Equation 4.1. However, the construction

of the SVM limit-state function is based on a DOE. Therefore, there is, in general,

an error associated with the approximation of the boundary. This can result in an

inaccurate probability of failure (Figure 6.1). Therefore, a PSVM-based method

accounting for these errors is presented in this section.

+1 (safe) 

MCS samples
MCS samples misclassified

actual

boundary

-1 MCS 

samples

SVM

SVM

mean
0)(xs

0)(xs

Figure 6.1: Calculation of the failure probability using an SVM (left). Misclassifi-
cation of the MCS samples by the SVM (right).

In order to account for an inaccurate SVM, the probability of failure is calculated

based on the probability of misclassification of the Monte-Carlo samples, in addition

to the probability density functions of the random variables. The probability of

misclassification is calculated using a PSVM. A modification of the basic sigmoid
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model (Platt, J.C. (1999); Vapnik, V.N. (1998)), presented in Section 6.3, is used.

A deterministic SVM only provides a binary classification. However, as explained

in Chapter 3, a PSVM provides the probability that a particular configuration

(or sample) will belong to a specific class (+1 or −1). This probability, which is

the conditional probability of belonging to the +1 (resp. −1) class is denoted as

P (+1|x) (resp. P (−1|x)).

It is noticed in Equation 4.1 that the indicator function Ig(x) can be interpreted

as the probability of being in the failure class based on a deterministic SVM bound-

ary. Therefore, the probability of being in the failure class −1 for any Monte-Carlo

sample is either 0 or 1. It is equal to 0 for a sample lying in the safe or +1 class and

equal to 1 for a sample lying in the failure or −1 class. The use of PSVM allows

one to replace the binary indicator function by P (−1|x), thus leading to:

P PSVM
f =

1

NMCS

(
NMCS∑

i=1

P (−1|xi)
)

(6.1)

A relatively conservative measure of the probability of failure is obtained if the

probability of misclassification is considered only for the Monte-Carlo samples be-

longing to the safe class, that is, for s(x) > 0:

P PSVM
f =

1

NMCS

(
NMCS∑

i=1

ψ (−1|xi)
)
,

ψ (−1|x) =





1 s(x) ≤ 0

P (−1|x) s(x) > 0
(6.2)

In Equation 6.2, the probability of misclassification is considered only for the

samples lying in the safe domain based on the SVM (s(x) > 0). Therefore, it would

naturally provide a probability of failure that is greater than the one using the

deterministic SVM (Equation 4.1). However, the failure probability estimate using

Equation 6.2 may be over-conservative. Therefore, instead of considering a non-zero
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P (−1|x) for the entire safe domain, it is reasonable to consider it only in the regions

with high probability of misclassification. Such regions can be identified as the ones

“lacking data” in the vicinity of the SVM boundary. Therefore, the region Ωmisc for

considering the probability of misclassification is a subset of the s(x) > 0 regions.

It is defined based on the distances to the closest +1 and −1 samples and the SVM

margin, which does not contain any samples. Outside this region, the classification

provided by the deterministic SVM is trusted (i.e. P (−1|x) is either 1 or 0). The

region Ωmisc for considering the probability of misclassification by the SVM is:

Ωmisc = Ωsd ∩ Ω (|s(x)| < 1 ∪ s(x)(d+(x)− d−(x) ≥ 0)) , (6.3)

where Ωsd is the safe domain based on the deterministic SVM, and d+(x) and d−(x)

are the distances of x to the closest +1 and −1 training samples. Ωmisc consists of

two kinds of regions in the +1 class. One is the SVM margin in the safe class and

the other is the region with d+(x) ≥ d−(x) (Figure 6.2). The probability of failure

is given as:

P PSVM
f =

1

NMCS

(
NMCS∑

i=1

γ (−1|xi)
)
,

γ (−1|x) =





1 xi ∈ Ωf

0 xi ∈ Ωsd − Ωmisc

P (−1|x) xi ∈ Ωmisc

(6.4)

The calculation of the failure probability using Equation 6.4 requires the calcula-

tion of P (−1|x) in the region Ωmisc. The details of the PSVM models for calculating

P (+1|x) or P (−1|x) are presented in the following sections.

6.2 Review of the basic sigmoid PSVM model

The basic sigmoid PSVM model given by Platt (Platt, J.C. (1999)) was presented

in Chapter 3. In this model, the conditional probability P (+1|x) is represented as
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Figure 6.2: Definition of the region Ωmisc for considering the probability of misclas-
sification. Ωmisc is the union of the two shaded regions in the left and the right
figures.

a function of two parameters A and B:

P (+1|x) =
1

1 + eAs(x)+B
(6.5)

where A < 0. The conditional probability of the −1 class is equal to 1− P (+1|x).

One of the limitations of the basic sigmoid model is that it depends only on

the SVM values and not on the spatial distribution of the samples. As a result, if

the classes of the evaluated samples are considered deterministic, it does not satisfy

one of the conditions that requires P (+1|x) to be either 0 or 1 at these samples.

Instead, it provides a probability of misclassification even for the samples that have

already been evaluated. An example of the probability of misclassification Pmisc

using Platt’s sigmoid model is shown in Figure 6.3. It is seen that the probability of

misclassification is high even for regions that are far from the boundary and consist

of already evaluated samples. A modified PSVM model is presented in the following

section to overcome this limitation.



158

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x1

x
2

 

 

0

0.1

0.2

0.3

0.4

0.5
Pmisc

SVM
+1 sample

−1 sample

Figure 6.3: Map of the probabilities of misclassification using Platt’s sigmoid model.

6.3 Improved distance-based probabilistic support vector machines (DPSVMs) us-

ing a modified sigmoid model

The biggest limitation of the basic sigmoid PSVM stems from neglecting the spatial

distribution of the evaluated samples. To overcome this issue, a modified sigmoid

model is presented in this section. The proposed model depends not only on the SVM

values, but also on the distances to the evaluated samples used to train the SVM.

Because the proposed model depends on the spatial distribution of the samples,

it is also referred to as the distance-based probabilistic support vector machine

(DPSVM). It is assumed in this model that the class of any evaluated sample is

deterministic. The modified sigmoid model is defined as:

P (+1|x) =
1

1 + e
As(x)+B(

d−
d++τ

− d+
d−+τ

)
A <

−3

min(smax,−smin)
, B < 0, (6.6)

where d− and d+ are the distances to the closest -1 and +1 samples. τ is a small

quantity (set equal to 10−100 in this work) added in order to avoid numerical issues

at the evaluated training samples.

The proposed model satisfies the following conditions:

• P (+1|x)→ 1 if s(x)→∞ or d+ → 0
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• P (+1|x)→ 0 if s(x)→ −∞ or d− → 0

• P (+1|x)→ 0.5 if s(x)→ 0 and d− → d+

The upper bound on A ensures that P (+1|x) does not have a strong dependence

on the distances away from the boundary. That is, the values of P (+1|x) are close

to 0 or 1 far from the boundary, irrespective of the influence of the distances. More

specifically, for B = 0, the upper bound ensures P (+1|x) > 0.95 at the point of

maximum SVM value smax and P (+1|x) < 0.05 at the point of minimum SVM

value smin. The demonstration for the former is given below by setting B = 0:

1

1 + eAsmax
> 0.95

⇒ A <
ln
(

0.05
0.95

)

smax
=
−2.94

smax
≈ −3

smax
(6.7)

The strict inequality bound on B (B < 0) ensures that P (+1|x) → 1 at the

+1 samples and P (+1|x) → 0 at the −1 samples. The demonstration for the two

cases is given below.

For the +1 samples, d+ → 0:

P (+1|x) = lim
τ→0

1

1 + eAs(x)+B(
d−
τ

)
≈ 1

1 + eAs(x)−∞ ≈
1

1 + e−∞
≈ 1 (6.8)

For the −1 samples, d− → 0:

P (+1|x) = lim
τ→0

1

1 + eAs(x)+B(− d+
τ

)
≈ 1

1 + eAs(x)+∞ ≈
1

1 + e+∞ ≈ 0 (6.9)

The training process for the DPSVM is as follows.

• The value of d+ for a +1 sample and that of d− for a -1 sample are zero.

However, during the training process, these are assigned as the distances to

the closest +1 and -1 samples other than the sample under consideration.
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• The values of s(x), d− and d+ at training samples are used to calculate the like-

lihood function, which is then maximized to find A and B. The optimization

is solved using a genetic algorithm (GA).

Because the proposed DPSVM model accounts for both the SVM values and the

spatial distribution of the evaluated samples, it overcomes the limitations of the

basic SVM model mentioned in Section 6.2. A conceptual graphical comparison of

the proposed model with Platt’s sigmoid model is provided in Figure 6.4. A map

of the probabilities of misclassification is shown in Figure 6.5.

P(+1|x) = 0.5

(isocontour of s(x))

P(+1|x) = 0.5

(not an isocontour

of s(x))
s(x) = 0

s(x) = 0

PSVM based on Platt’s sigmoid model Modified PSVM accounting for sample positions

P(+1|x) < 1 P(+1|x) = 1

Figure 6.4: Comparison of the two PSVM models.

6.4 Error quantification of the PSVM model

In order to compare the proposed DPSVM model with Platt’s PSVM model, a

measure to quantify the error for the models is presented in this section. In the

case where the actual limit-state function is known, P (+1|x) is known for any point

and is equal to 0 or 1. Therefore the error of the PSVM model can be calculated

at any point. A large number of test points from a uniform grid are used for this

purpose. Because the actual class of the all the test points is known, the probability
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Figure 6.5: Map of the probabilities of misclassification using the modified distance-
based sigmoid model. A comparison with the probabilities in the Figure 6.3 shows
major differences.

of misclassification for the ith point is:

Pmisc (xi) =





1− P (+1|xi) yi = +1

P (+1|xi) yi = −1
, (6.10)

where xi represents the ith test point with class label yi. A good PSVM model

should provide a low probability of misclassification for the test points. The error

Etest is defined as the mean probability of misclassification for all the test points:

Etest =
1

Ntest

Ntest∑

i=1

Pmisc (xi) (6.11)

6.5 Examples

This section presents analytical test examples to compare the PSVM models as

well as to demonstrate the PSVM-based failure probability measure. The examples

consist of two and three variables. For each example, the actual limit-state

functions are approximated with SVMs constructed with CVT DOEs. Two studies

are performed for each example - comparison of the two PSVM models and the

study of the proposed failure probability measure. For each example, the ratio
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of the probability of failure obtained with the PSVM models to the probability

obtained with the deterministic SVM is provided. This ratio, referred to as the

probability ratio (PR), provides a measure of the conservativeness of the PSVM

model compared to the deterministic SVM. The size of the DOE is varied to study

its effect on the PSVM and the probability of failure. As explained in Section 6.4,

a uniform grid is used to quantify the efficacy of the PSVM models. For comparing

the probabilities of failure, all the variables are assumed to have truncated Gaussian

distributions with mean equal to 0 and standard deviation equal to 1.0. The lower

and upper bounds of all the variables are -4.0 and 4.0. The probabilities of failure

are calculated using 106 MCS samples for all the examples.

The following notations are used in this section:

• EPlatt
test : test point based error for the Platt PSVM model

• EModified
test : test point based error for the modified DPSVM model

• PActual
f : probability of failure calculated using the actual limit-state function

• P SVM
f : probability of failure calculated using the SVM limit-state function

• P Platt
f : PSVM-based probability of failure calculated using the Platt model

• PModified
f : PSVM-based probability of failure calculated using the DPSVM

model

• εSVMPf
: relative difference between P SVM

f and P actual
f

• εPlattPf
: relative difference between P Platt

f and P actual
f

• εModified
Pf

: relative difference between PModified
f and P actual

f

• PR: probability ratio
PModified
f

PSVMf
or probability ratio

PPlattf

PSVMf
. Ratio of failure prob-

ability obtained with PSVM model to probability obtained with deterministic

SVM.
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6.5.1 Example 6.1 - two dimensional problem

This example consisting of two variables x1, x2 ∈ [−4, 4] has two failure modes. The

failure region is defined as:

Ωf = (−8(x1 − 2) + x2
2 ≤ 0) ∩ (x2 − tan

( π
12

)
(x1 + 7) + 4 ≤ 0) (6.12)

The two modes and the resulting limit-state function are shown in Figure 6.6.

With the SVM-based approach, both the modes are represented by a single bound-

ary.
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Figure 6.6: Example 6.1. The left figure shows the limit-state functions due to the
two failure modes. The right figure shows the net failure region. For this example,
the system is considered failed if it fails based on both modes.

In order to study the effect of the DOE, SVM approximations are constructed

using 40 to 100 CVT DOE samples with increments of 20. A comparison of the

Platt model and the proposed distance-based PSVM model is provided in Section

6.5.1. Additionally, the probabilities of failure are provided in Section 6.5.1.

Comparison of the PSVM models

The two PSVM models are compared in this section based on the measure provided

in Section 6.4. 1600 grid points are used to calculate the errors due to the two
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models. One example of the distribution of Pmisc values in the space for 40 samples

is shown in Figures 6.3 and 6.5. The errors EPlatt
test and EModified

test are shown in Figure

6.7. Clearly, the proposed modified PSVM model provides lower errors irrespective

of the size of the DOE.

40 60 80 100
4

6

8

10

12

14

16

N

E
te

s
t

(%
)

 

 

EP latt
test

EModified
test

Figure 6.7: Example 6.1. Testing error for the PSVM models.

Comparison of the probabilities of failure

The probabilities of failure using varying sized DOEs are provided in Figure 6.8. The

dashed-dotted green curve represents the probability of failure calculated using the

deterministic SVMs. Clearly, there is significant variation in the failure probability

depending on the DOE. The PSVM-based probabilities of failure and the relative

differences with respect to P actual
f using the two PSVMs are also shown in Figure 6.8

with the dashed blue and the solid black curves. It is seen from the figures that the

deterministic SVM-based failure probability is less than the actual value (red) for

several cases. The PSVM-based failure probabilities are always more conservative

than the deterministic SVM case as demonstrated by the probability ratios depicted

in Figure 6.9.
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Figure 6.8: Example 6.1. Probabilities of failure.
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Figure 6.9: Example 6.1. Probability ratios with respect to the deterministic SVM-
based failure probability.

6.5.2 Example 6.2 - three dimensional problem

A three variable example consisting of four disjoint regions in the space (Figure

6.10) is presented in this section. All the variables lie between −4 and 4. The
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failure region is given as:

Ωf = (x1 − 2)2 + x2
2 + (x3 + 2)2 − 3x1x2x3 + 1 ≤ 0 (6.13)

Figure 6.10: Example 6.2. Actual limit-state function.

The SVM approximation of the limit-state function is constructed using 40 to

1000 samples at an interval of 40. The corresponding PSVMs based on the two

models are compared in Section 6.5.2. The probabilities of failure are provided in

Section 6.5.2.

Comparison of the PSVM models

The comparison of the two PSVM models, based on testing points, is provided in

this section. A grid consisting of 64000 points is used. The errors are shown in

Figure 6.11. Similar to Example 6.1, the proposed modified PSVM model provides

lower errors irrespective of the size of the DOE. This again shows the superiority of

the proposed model. Additionally, the difference is especially prominent for smaller

DOEs that represent lack of data in the space.
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Figure 6.11: Example 6.2. Testing error for the PSVM models.

Comparison of the probabilities of failure

Similar to Example 6.1, it is seen in Figure 6.12 that the probability of failure calcu-

lated using the deterministic SVMs (dashed-dotted green) show significant variation

with respect to the size of the DOE. Also, the failure probability is less than the

actual value (red) in several cases. The PSVM-based failure probabilities are al-

ways more conservative than the deterministic SVM case as demonstrated by the

probability ratios depicted in Figure 6.13. As expected, these ratios reduce with the

number of samples because the confidence on the SVM increases.

6.6 Discussion

This section presents a discussion on the results presented in Section 6.5. First,

the results of the comparison between the two PSVM models shows a very

clear trend. Unlike the modified model, the Platt model does not satisfy the

condition of having probabilities equal to 0 or 1 at the evaluated samples. The

comparison of the errors EPlatt
test and EModified

test also shows lower errors for the pro-

posed model for both the examples. Both the errors reduce with the size of the DOE.
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Figure 6.12: Example 6.2. Probabilities of failure.
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Figure 6.13: Example 6.2. Probability ratios with respect to the deterministic SVM-
based failure probability.

A study of the failure probabilities using the deterministic SVMs shows signif-

icant variation with the DOE size. The uncertainty in the SVM approximations

supports the need for considering the error associated with them. Therefore, the

PSVM models are used to provide a probability of failure that accounts for these

errors. The PSVM-based failure probability is calculated such that it is always more

conservative than the one calculated with the deterministic SVM. Figures 6.9 and
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6.13 show the ratio of the PSVM-based failure probabilities to the probabilities using

the deterministic SVMs. The ratio is always greater than 1. In fact, the probabil-

ity ratios are higher when the sparsity is greater and reduces with the size of the

DOE. This indicates that the confidence in the SVM increases with the amount of

data, as expected. It is, therefore much more meaningful than using an arbitrary

constant safety factor. The comparison of the failure probabilities using the Platt

and the modified PSVMs does not indicate a very large difference. This is because

the probability of misclassification is considered only in the region Ωmisc, which is

small when compared to the entire space. In general, the more conservative failure

probability among the two (Platt and Modified PSVM) may be used. In addition

to considering the probability of misclassification by the SVM, it is also useful to

consider the variance of the MCS. Therefore, the 99% confidence intervals of the

MCS failure probability estimates for Example 6.5.1 are also shown in Figure 6.14 .
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Figure 6.14: 99% confidence interval of the MCS failure probability estimates for
Example 6.1.

In the studies performed in this chapter, significant variations of the failure

probabilities were observed with respect to the size of the CVT DOEs. Apart from

using PSVMs for quantifying the probability of misclassification, another option
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to reduce the errors is to use adaptive sampling for the SVMs (Chapters 4 and

5). Adaptive sampling will increase the accuracy of the SVM, and also reduce

the variation in the approximation by placing additional samples in the important

regions. The probabilities of failure based on deterministic and probabilistic SVMs

are expected to converge to the same value when a large number of adaptive

samples is used. It should be noted that even with adaptive sampling, the SVM

may not always be accurate as there might not be enough samples. If there are

limitations on the number of samples due to high computation cost, then PSVM

will allow the flexibility to use a relaxed convergence criterion. This is because the

PSVM-based failure probability is always larger than the one using deterministic

SVM, and even with fewer samples it is more likely to lead to a conservative estimate.

A new sampling scheme is also possible based on the proposed modified PSVM

model. Because it provides the probability of misclassification, samples may be

added in regions with high misclassification probability. One such scheme is used in

the following chapter.

6.7 Concluding remarks

6.7.1 Summary

A method for reliability assessment using PSVMs was presented in this chapter.

The main idea is to include the probability of misclassification of Monte-Carlo

samples in the failure probability calculation. The proposed failure probability

measure was shown to be more conservative than the deterministic SVM. Apart

from the failure probability measure, an improved PSVM model was also presented

in this chapter. Its efficacy to predict the probability of misclassification by the

SVM was demonstrated through the example problems.
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6.7.2 Future work

The next steps of this research will study higher dimensional examples. In addi-

tion, methods to use PSVM for adaptive sampling will be explored. The first steps

towards a PSVM-based adaptive sampling scheme have been implemented in Chap-

ter 7. Another possibility of improvement is in the definition of the region Ωmisc.

Currently this region is defined based on a nearest neighbor algorithm. There is

scope to improve this by using k nearest neighbours, or some gradient information

to smoothen the boundaries of this region.
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CHAPTER 7

CONSTRAINED EFFICIENT GLOBAL OPTIMIZATION USING SVMs

In previous chapters, the use of SVM for the construction of decision boundaries

was demonstrated. These boundaries were used for reliability assessment and

RBDO. However, the objective functions for optimization were given by analytical

functions in these chapters. This may not be the case in general, i.e. evaluation

of the objective function may also be expensive. In this chapter, a deterministic

optimization method is presented that addresses both expensive constraints as well

as objective functions. More specifically, a methodology for constrained Efficient

Global Optimization (EGO) using Support Vector Machines (SVMs) is presented.

While the objective function is approximated using Kriging as in the original

EGO formulation (Jones, D.R. et al. (1998)), the “zero-level” of the constraints is

approximated explicitly as a function of the design variables using an SVM. The

use of SVM for constraint handling allows one to take advantage of the benefits of

the EDSD approach, as outlined in Chapter 4. Because the constraint response is

not approximated, this approach alleviates issues due to discontinuous or binary

responses. More importantly, several constraints can be represented using one

unique SVM, thus considerably simplifying constrained problems. In order to

account for constraints, an SVM-based probability of feasibility is introduced in

the optimization formulation. The probability is calculated using the modified

probabilistic SVM (PSVM) model presented in Chapter 6. Several constrained

EGO formulations are implemented and compared. For instance, formulations

with global and local update regions of the SVM boundary are presented. The

adaptive sampling scheme also consists of samples selected based on the probability

of misclassification obtained using the PSVM.

The organization of this chapter is as follows. The previous EGO methodologies
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are reviewed in Section 7.1. The proposed methodology for EGO with explicit SVM

constraints, using PSVM-based probability of feasibility, is presented in Section 7.2.

Finally, analytical example problems from the literature (Sasena, M.J. (2002)) are

considered in Section 7.3 to validate the efficacy of the proposed methodology. For

the sake of completeness, the details of the derivation of the expected improvement

are given in the Appendix B, at the end of the dissertation.

7.1 Review of efficient global optimization (EGO)

The EGO formulation for unconstrained optimization was presented in Section

2.6.3. The original method is based on the maximization of expected improvement

(EI) (Jones, D.R. et al. (1998)), but several variations of the sample selection

method are also found in the literature (Sasena, M.J. (2002); Forrester, A.I.J. et al.

(2008)). Constrained formulations of EGO have also been implemented, some of

which are reviewed in this section.

In order to include constraints in the optimization, several EGO formulations

have been proposed. In Schonlau, M. (1997), Schonlau proposed the multipli-

cation of the EI with the probability of feasibility, calculated using the Kriging

approximation of the constraint responses. In the case of multiple constraints,

the probability is given by the product of the probability of feasibility of each

constraint. A method based on the expected improvement of a penalized objective

function was proposed in Sasena, M.J. et al. (2002). Both these methods had

limitations and Sasena, M.J. (2002) proposed another approach which involves the

maximization of the EI with sample constrained to lie in the feasible space. The

feasible space was defined based on the mean values of the Kriging models for the

constraint functions. Another way of handling the constraints involves the use of

the expected violation (EV) Audet, C. et al. (2000). The EV is calculated in the

same way as the EI and provides a measure of the expected amount by which

a constraint is violated. It is then used to penalize the EI while locating the samples.
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A common feature of all the above methods lies in the use of Kriging approxi-

mations for both the objective function, as well as for each constraint. Therefore,

these methods would be hampered by discontinuous or binary constraint functions.

Also, the propagation of the error in calculating the probability of feasibility is

multiplicative for multiple constraint problems. The calculation of probability

of feasibility is based on the assumption of independence of the constraints. In

order to overcome these issues, the SVM-based approach presented in the following

section is used in this work for approximating the constraints.

7.2 Constrained EGO using PSVMs

This section describes various candidate formulations of the proposed constrained

EGO methodology. The core methodology is based on the EI as well as the prob-

ability of feasibility. In this work, the focus is on handling the constraints, i.e. to

provide a method for assessing the probability of feasibility. This probability is cal-

culated using the modified probabilistic SVM (PSVM) model presented in Chapter

6. +1 being the feasible class, the probability of feasibility is equal to P (+1|x)

(Equation 6.9). It should be noted that although the methods presented in this

chapter are based on just the EI, in terms of handling the objective function, other

more recent criteria (Sasena, M.J. (2002); Forrester, A.I.J. et al. (2008)) may also

be used to improve the methodology. This would only require replacing the EI with

the desired criterion. The optimization schemes implemented are divided into three

categories:

• Update scheme 1. Constrained optimization problem formulated as an un-

constrained problem that maximizes the product of the EI and the probability

of feasibility.

• Update scheme 2. Maximization of the EI with a constraint based on an

SVM approximation.
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• Update scheme 3. Local approach with update region. Sequential two

step approach involving the selection of a sample based on the formulations

of update scheme 1 or 2 and a step to define samples dedicated to the local

refinement of the SVM boundary.

The main characteristic of the proposed approach lies in the handling of the

constraints. Instead of approximating each constraint response, an SVM boundary

describing the “zero-level” contour of the constraint is constructed. It is critical to

understand the difference between existing constrained EGO approaches (Section

7.1) and the proposed approach. While the former approach tries to approximate

the actual constraint function values, an SVM is only interested in the isocontour

that defines the boundary of the feasible region. In order to construct the SVM, the

feasible class is labeled as +1 and the infeasible class is labeled −1. The use of an

SVM for constraint handling has two major implications:

• Since this method eliminates the need to approximate the constraint function,

it can handle problems with discontinuous or binary functions.

• A single SVM is used to define all the optimization constraints. Unlike the

previous methodologies (Section 7.1), this method does not require the multi-

plication of the probabilities of feasibility for individual constraints. Therefore,

the multiplicative error propagation in calculating the probability is avoided

for multiple constraint problems. In addition, since only the classification of

the samples is needed, the evaluation of all the constraint functions may not

be required.

7.2.1 Update scheme 1

The update scheme 1 is similar to the probability adjusted EI method in Schonlau,

M. (1997). The iterates are selected by solving an unconstrained formulation that

maximizes the product of the EI and the probability of feasibility P (+1|x). Thus,

a sample is selected if it has a high EI and a high probability of being feasible.
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However, unlike the original method Schonlau, M. (1997), the value of P (+1|x) is

calculated using a PSVM (Equation 6.9).

max
x

EI(x)P (+1|x) (7.1)

The objective function in Equation 7.1 can have several local optima. In this work,

a Genetic Algorithm (GA) is used to solve the problem. The initial population

is a CVT DOE consisting of 100m samples, m being the dimensionality. GA

being a stochastic method, there can be variation in the optimization results.

A deterministic method such as the branch and bound implementation in the

DIRECT software may also be used.

7.2.2 Update scheme 2

This scheme is a modification of the method in Sasena, M.J. (2002), in which

the solution of a constrained optimization was proposed to avoid the difficulties

associated with the probability scaling of the EI. Unlike the update scheme 1, it

simply uses the EI in the objective function. In Sasena, M.J. (2002), the constraints

were approximated using Kriging models and the mean values of these models were

used to guide the optimizer in the feasible space. In the SVM-based approach,

the Kriging mean, which approximates the constraint responses over the whole

space, is replaced by an SVM that approximates the zero-level contour of the

constraint. Again, it is important to remember that only one SVM is needed for

several constraints, whereas several Kriging models will be needed if the response

approximation approach is chosen.

Clearly, the proposed approach will be highly dependent on the quality of the

SVM approximation because the samples are selected only in the regions defined

as feasible by the current constraint approximation. Therefore, if the constraint is

not accurate, this may lead to a low rate of convergence to the actual optimum. To

overcome such problems, a PSVM-based constraint is used to locate the samples.
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The samples are selected in regions with given minimum probability of being feasible

(Figure 7.1). In addition to the current SVM boundary, this probability also depends

on the spatial distribution of the samples (Equation 6.9).

max
x

EI(x)

s.t. δpp − P (+1|x) ≤ 0 (7.2)

where δpp is a given threshold of the probability of feasibility. The optimization is

solved using a GA with the same starting population as update scheme 1.
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Figure 7.1: Selection of a sample using the maximization of EI in regions with a
minimum threshold probability of feasibility.

7.2.3 Update scheme 3

The selection of samples using the schemes 1 and 2 is performed globally over the

whole space. This third update scheme investigates the local refinement of the SVM

constraint approximation. The basic idea is depicted in the Figure 7.2. After a sam-

ple from update scheme 1 or 2 is found, additional samples are added in the vicinity

of the current iterate, with the purpose of refining the SVM boundary and improving

the estimate of P (+1|x). This scheme, consisting of an extra step to locally refine
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the SVM, is referred to as the “update scheme 3” in the remainder of the paper.

It is categorized as the scheme 3a or 3b depending on whether the first sample

is selected using Equation 7.1 (update scheme 1) or Equation 7.2 (update scheme 2).

Initial objective function 

(Kriging) and constraint zero-

level approximations (SVM)

Global search for a 

sample based on the EI 

(Equation 7.1 or 7.2)

Refinement of the SVM 

locally with samples selected 

within an update region

Converged?

Report the best evaluated 

sample as the optimum 

solution

No

Yes

Figure 7.2: Basic summary of the update scheme 3.

While the EI maximization sample xEI (Equation 7.1 or 7.2) explores the space

globally, the additional samples, referred to as “primary” and “secondary” samples,

are selected in a hyperspherical “update region” centered at the current iterate x?.

The radius Ru of the update region is:

Ru = max

(
||xEI − x?||, d+, d−, 0.5

(
V

N

) 1
m

)
(7.3)

where d+ and d− are the distances to the closest +1 and −1 samples, V is the

volume of the design space, N is the number of samples and m is the number of
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design parameters.

The summary of the update scheme 3 is given in Algorithm 7.1. The objective

of primary samples is to sample sparse regions with high probabilities of misclassifi-

cation (incorrect class prediction) by the SVM (Figure 7.3). The secondary samples

are evaluated to avoid non-uniformity of the samples belonging to the two classes in

the vicinity of the SVM constraint (Figure 7.4). The selection of secondary samples

is performed using Equations 4.7-4.9. The primary samples are selected using a

new PSVM-based method. In order to avoid deviation from the main message of

this chapter, details of the PSVM-based primary sample selection are presented in

Appendix B. The primary and secondary samples (xp and xs) can be evaluated in

parallel with the EI maximization sample xEI (Equation 7.1 or 7.2).

pmP  )|1( x


x
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training sample

update region
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pmP  )|1( x

evaluated
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Figure 7.3: Update of the SVM constraint due to a primary sample.
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Figure 7.4: Update of the SVM constraint due to a secondary sample.

Algorithm 7.1: update scheme 3

1: Sample the space with a CVT DOE.

2: Evaluate the objective function at each sample.

3: Construct the initial Kriging model for the objective function.

4: Evaluate the constraint function(s) at each sample.

5: Classify the samples into two classes (e.g. feasible and infeasible) based on the

constraint function values. The classification is performed using a threshold

value or a clustering technique if discontinuities are present.

6: Construct the initial SVM boundary that separates the classified samples.

7: Calculate the parameters of the PSVM model using maximum likelihood.

8: Set iteration k = 0

9: repeat

10: Locate the current best solution among the evaluated samples. Set f ? equal

to the objective function value at this sample.

11: Select a sample based on the EI and P (+1|x) using the Equation 7.1 (scheme

3a) or the Equation 7.2 (scheme 3b).
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12: Define the center and the radius of the “update region”.

13: for i = 1 to i = np do

14: Select a primary sample in the update region. For the first iteration, the

entire space is the update region.

15: end for

16: for i = 1 to i = ns do

17: Select a secondary sample in the update region.

18: end for

19: Update the Kriging model for the objective function.

20: Evaluate the constraint function(s) at the selected samples and reconstruct

the SVM and the PSVM with the new information.

21: k = k + 1

22: Calculate the convergence measure.

23: until convergence

7.3 Examples

In this section, two test examples are presented to validate the proposed methodolo-

gies. The examples presented are taken from the literature Sasena, M.J. (2002). The

optimization problems consisting of analytical objective functions and constraints

have the following form:

min
x

f(x)

s.t. gi(x) ≤ 0 i = 1, 2, 3... (7.4)

For each problem presented, the actual optimal solution is known. A comparison of

the different update schemes is provided for each example. For each example, the

initial DOE consists of 10 CVT samples and the update is run for 50 iterations to

study the convergence. The value of δpp in Equation 7.2 is initially set equal to 0.5.
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If no solution with a non-zero EI is found, then δpp is decreased until a solution is

found. The following notations are used in this section:

• k is the iteration number. The number of samples selected during each itera-

tion depends on the update scheme.

• εfk is the relative error of the optimum objective function value at the kth

iteration.

• x? and f ? are the predicted optimum and the corresponding objective function

value.

• x?actual and f ?actual are the actual optimum and the corresponding objective

function value.

7.3.1 Example 7.1: three constraint problem

This example consists of two design variables x1 and x2 with identical ranges [0, 1].

The optimization problem, consisting of three constraints, is defined as:

min
x

f(x) = −(x1 − 1)2 − (x2 − 0.5)2

s.t. g1(x) = ((x1 − 3)2 + (x2 + 2)2)e(−x72) − 12 ≤ 0

g2(x) = 10x1 + x2 − 7 ≤ 0

g3(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2 ≤ 0 (7.5)

Figure 7.5 shows the individual constraints and the resulting feasible region.

The objective function contours and the optimum solution are also plotted. The

problem has two optima at (0.2316,0.1216) and (0.2017,0.8332). The latter one is

the global optimum with an objective function value −0.7483.

The update schemes 1-3 are used to find the optimum. The update schemes

3a and 3b are run with three combinations of the primary and secondary samples
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Figure 7.5: Example 7.1. Actual individual constraint boundaries and the resulting
feasible and infeasible regions (left). Objective function contours, the constraint
boundary and the the optimum solution (right).

(np = 2 and ns = 0,np = 0 and ns = 2,np = ns = 1). As a reminder, these

samples are used to update (and refine) the approximation of the SVM boundary.

The results are listed in Tables 7.1-7.3. The initial relative error in f ? is 51.2%.

Three sets of results at several iterations are provided. It is seen that in most

cases, the optimizer converges to the global optimum. However, there are a few

cases where the local optimum is found. Figure 7.6 shows the evolution of f ?. The

SVM constraints after the update are plotted in Figures 7.7-7.10. For completeness,

the results are compared to those using Kriging approximation of the constraints

Sasena, M.J. (2002) in the Appendix B.

7.3.2 Example 7.2: two constraint problem

The feasible space for this problem is defined by two constraints. The objective

function, the constraints and the optimum solution are shown in the Figure 7.11.

Both the design parameters x1 and x2 lie in the range [−2, 2]. The actual optimum

is at (0.5955,−0.4045) with an objective function value of 289.85. The optimization
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Figure 7.6: Example 7.1. The evolution of f ? using the update schemes 1− 3. The
solid curves represent the mean of three runs for each case.

problem is:

min
x

f(x) = (1 + A(x1 + x2 + 1)2)(30 +B(2x1 − 3x2)2)

where A = 19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2,

and B = 18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

s.t. g1(x) = −3x1 + (−3x2)3 ≤ 0

g2(x) = x1 − x2 − 1 ≤ 0 (7.6)

The optimization is solved using the methodologies explained in the Section 7.2.
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x
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Figure 7.7: Example 7.1. Update scheme 1. SVM (green) and PSVM (dashed
magenta) at k = 0 (left) and k = 50 (right) and the actual constraint (red).

x

Figure 7.8: Example 7.1. Update scheme 2. SVM (green) and PSVM (magenta
dashed) at k = 50 and the actual constraint (red).
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x

Figure 7.9: Example 7.1. Update scheme 3a with np = 1 and ns = 1. SVM (green
cunrve) and PSVM (mageta dashed) at k = 50 (left). Magnified view of the region
in the vicinity of x? (right). The updated SVM is locally accurate.

x

Figure 7.10: Example 7.1. Update scheme 3b with np = 1 and ns = 1. SVM (green
curve) and PSVM (magenta dashed) at k = 50 (left). Magnified view of the region
in the vicinity of the optimum (right). The SVM boundary is very similar to the
actual constraint (red curve).
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Scheme εf10% εf20% εf30% εf40% εf50%
1 18.8 18.8 7.9 0.8 0.8
2 16.2 2.3 0.6 0.1 0.1

3a (np = 2, ns = 0) 18.2 10.1 10.1 8.6 8.6
3a (np = 0, ns = 2) 11.8 10.5 9.7 9.7 9.7
3a (np = 1, ns = 1) 17.7 14.0 12.5 9.8 9.6
3b (np = 2, ns = 0) 4.9 1.4 0.2 0.2 0.2
3b (np = 0, ns = 2) 22.9 8.2 0.5 0.5 0.5
3b (np = 1, ns = 1) 26.6 1.3 1.3 1.1 0.2

Table 7.1: Example 7.1. Relative error in f ? at specific iterations from first run.

Scheme εf10% εf20% εf30% εf40% εf50%
1 15.4 3.3 3.3 3.3 3.3
2 17.9 6.0 3.5 3.3 2.1

3a (np = 2, ns = 0) 26.9 4.6 2.2 1.8 0.8
3a (np = 0, ns = 2) 10.6 0.7 0.6 0.6 0.6
3a (np = 1, ns = 1) 18.0 3.9 2.0 1.2 1.2
3b (np = 2, ns = 0) 14.1 1.6 1.1 0. 0.1
3b (np = 0, ns = 2) 20.1 2.1 0.7 0.6 0.3
3b (np = 1, ns = 1) 23.3 10.2 8.7 8.4 8.2

Table 7.2: Example 7.1. Relative error in f ? at specific iterations from second run.

Scheme εf10% εf20% εf30% εf40% εf50%
1 15.4 4.9 4.9 1.2 1.2
2 15.9 10.1 8.2 8.0 8.0

3a (np = 2, ns = 0) 8.2 2.4 1.4 0.8 0.4
3a (np = 0, ns = 2) 10.9 2.3 1.3 1.2 1.1
3a (np = 1, ns = 1) 16.4 2.1 1.4 1.4 1.1
3b (np = 2, ns = 0) 18.4 2.4 0.3 0.1 0.01
3b (np = 0, ns = 2) 9.9 0.7 0.1 0.1 0.05
3b (np = 1, ns = 1) 27.3 1.4 0.4 0.4 0.3

Table 7.3: Example 7.1. Relative error in f ? at specific iterations from third run.

As explained before, the feasible region defined by the two constraints is approx-

imated using a single SVM. Results of the optimization at several iterations are
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Figure 7.11: Example 7.2. Individual constraint boundaries and the resulting feasi-
ble and infeasible regions (left). Objective function contours, the constraint bound-
ary and the the optimum solution (right).

listed in Tables 7.4-7.6. The initial error is 261.0%. The evolution of f ? using the

different update schemes is plotted in Figure 7.12.

Scheme εf10% εf20% εf30% εf40% εf50%
1 202.6 33.2 33.2 33.2 6.2
2 219.7 20.6 17.3 5.4 2.0

3a (np = 2, ns = 0) 126.8 32.8 22.1 22.1 22.1
3a (np = 0, ns = 2) 128.0 31.4 18.0 11.4 7.8
3a (np = 1, ns = 1) 61.5 29.6 14.0 11.6 11.6
3b (np = 2, ns = 0) 53.7 6.7 0.3 0.3 0.3
3b (np = 0, ns = 2) 39.4 20.2 3.7 3.7 3.7
3b (np = 1, ns = 1) 111.8 15.6 6.9 1.0 1.0

Table 7.4: Example 7.2. Relative error in f ? at specific iterations from first run.
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Scheme εf10% εf20% εf30% εf40% εf50%
1 202.6 33.3 33.3 6.8 6.8
2 224.3 83.9 75.4 10.8 1.8

3a (np = 2, ns = 0) 97.7 28.0 6.9 6.9 6.9
3a (np = 0, ns = 2) 145.3 12.6 12.6 6.2 2.6
3a (np = 1, ns = 1) 116.3 31.5 31.5 15.5 5.9
3b (np = 2, ns = 0) 40.7 4.7 0.1 0.1 0.1
3b (np = 0, ns = 2) 52.9 9.3 4.3 0.1 0.1
3b (np = 1, ns = 1) 126.7 6.2 6.2 1.5 1.2

Table 7.5: Example 7.2. Relative error in f ? at specific iterations from second run.

Scheme εf10% εf20% εf30% εf40% εf50%
1 202.6 32.0 32.0 32.0 13.9
2 180.7 58.3 40.1 30.8 29.0

3a (np = 2, ns = 0) 83.6 29.2 26.2 4.5 4.5
3a (np = 0, ns = 2) 88.3 27.9 25.4 11.9 11.9
3a (np = 1, ns = 1) 112.5 50.8 15.9 15.9 15.9
3b (np = 2, ns = 0) 38.5 6.3 6.3 2.9 0.6
3b (np = 0, ns = 2) 126.6 27.9 3.6 0.8 0.4
3b (np = 1, ns = 1) 54.4 2.8 2.8 0.7 0.3

Table 7.6: Example 7.2. Relative error in f ? at specific iterations from third run.

7.4 Discussion

This section presents a discussion on the results presented in Section 7.3. Apart

from interpreting the results, the merits of the proposed technique are also discussed.

The results of the two example problems in Section 7.3 show the efficacy of the

proposed method to locate the optimum. In particular, the examples show the

applicability of the method to multiple constraint problems. The usefulness of the

proposed methodology for handling multiple constraint problems is as expected

because it simplifies such problems by replacing all the constraints with a single

SVM constraint boundary approximation. For Example 1, the results of the

proposed SVM-based method are compared to those using Kriging-based constraint
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Figure 7.12: Example 7.2. Evolution of f ? using the update schemes 1 − 3. The
solid curves represent the mean of three runs for each case.

approximations with the same number of function evaluations (Appendix B). Both

the SVM and Kriging approaches provide fairly accurate results, although the

accuracy of the Kriging-based method is relatively higher at the same number of

evaluations for this particular problem. However, the usefulness of the SVM-based

approach is expected to be more evident when several other constraints are

present. It should also be noted that in the case of multiple constraints it may

not always be necessary to evaluate all the constraint responses to obtain the
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classification information. If a sample is infeasible based on one of the constraints

then the other constraint responses need not be evaluated. Thus, the proposed

classification-based method can save several function evaluations if the constraint

responses are obtained using different solvers. Another very important advantage

of using the proposed SVM-based approach is that it can handle discontinuous and

binary responses. Because of this, the proposed method is more general as it can

be applied to a wider variety of problems. Also, being a relatively new approach,

the SVM-based method still has some potential for improvement in terms of the

efficiency.

Several formulations (or update schemes) of the constrained optimization

problem are compared in this chapter. The final optimum solutions obtained

with all the update schemes agree well with the actual known optimum. The

number of function evaluations for the same error level are nearly the same for

the different schemes. The function evaluations required by the schemes 3a and

3b are slightly higher for the problems that were studied. The difference in these

schemes, compared to the schemes 1 and 2, lies in the evaluation of the additional

primary and secondary samples. The evaluation of these samples is important

as they refine the SVM approximation, which can accelerate the search for the

optimum in some cases. As an additional advantage, the update schemes 3a and

3b also provide an accurate SVM boundary locally in the vicinity of the optimum,

which is not the case with the other two update schemes (Figures 7.7-7.10). The

locally refined SVM can, therefore, be used for calculating the probability of failure

if uncertainties are present in the variables. Thus, the approach can be extended

to reliability-based design optimization. It should also be noted that the primary

and secondary samples can be evaluated in parallel with the EI maximization

sample xEI . Therefore, if parallel processing capability is available (which is often

the case in present days), these additional samples do not incur additional cost in

terms of the wall time. For the same number of iterations, scheme 3b provides the

highest accuracy. Especially, for Example 7.2, the accuracy is much higher using
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the update scheme 3b. An interesting feature emerges from the study of the spatial

distribution of the samples (Figures 7.7 to 7.10). Many of the samples are selected

in the infeasible space when using the update schemes 1 and 3a. Such behavior

stems from the issue of the relative scaling between the EI and the P (+1|x). The

results show the dominance of the EI over the P (+1|x). Such issues are avoided in

the constrained formulation of the optimization problem (schemes 2 and 3b).

7.5 Concluding remarks

7.5.1 Summary

A method for constrained global optimization using SVM constraints is presented

in this chapter. The efficacy of the method is shown with two analytical examples

with multiple constraints. Several formulations of the constrained optimization

problem are proposed and compared in the results section. The use of SVM

for constraint approximation allows the handling of discontinuous and binary

constraint functions. Also, it simplifies multiple constraint problems, as a single

SVM can be used even in the presence of several constraints. The optimization

formulations require the calculation of “probability of feasibility”. This is obtained

using the modified PSVM model presented in Chapter 6. The PSVM model is also

used in the selection of adaptive samples.

7.5.2 Future work

There are several avenues for future work in this research. First, the methodology

will be extended to perform reliability-based design optimization. The local update

used in the update scheme 3 provides an accurate SVM around the optimum and

thus, will be useful for failure probability calculation and RBDO. In the future, the

method will be applied to higher dimensional problems with multiple constraints.

Another area of future study is the implementation of selective evaluation of the
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objective function. The DOEs for evaluating the constraint and objective functions

will be different in such a scheme.



194

CHAPTER 8

RELIABILITY ASSESSMENT USING RANDOM FIELDS

It is well known that the initial assumptions for the representation and quan-

tification of uncertainties are of prime importance. These assumptions are as

important as the process used to propagate uncertainties. In previous chapters,

the SVM-based EDSD method was presented along with several adaptive sampling

methods. The use of SVM for reliability assessment was demonstrated. However,

the methods presented for the calculation of failure probabilities were based on the

representation of uncertainties using random variables. For a problem with spatial

variability (e.g., sheet metal thickness distribution), one should choose to describe

the problem with random fields as they provide a more realistic representation

than uncorrelated random variables (Missoum (2008)). A technique to incorporate

random fields non-intrusively in probabilistic design is presented in this chapter.

The approach is based on the extraction of the main features of a random field using

a limited number of experimental observations (snapshots). An approximation

of the random field is obtained using proper orthogonal decomposition (POD)

(Liang,Y. C. et al. (2002); Bui-Thanh, T. et al. (2003)). For a given failure

criterion, an explicit limit state function (LSF) in terms of the coefficients of the

POD expansion is obtained using a support vector machine (SVM). Adaptive

sampling (Chapter 4) is used to generate samples and update the approximated

LSF. The coefficients of the orthogonal decomposition are considered as random

variables with distributions determined from the snapshots. Based on these

distributions and the explicit LSF, the approach allows for an efficient assessment

of the probabilities of failure. In addition, the construction of explicit LSF has

the advantage of handling discontinuous responses. Two test-problems are used to

demonstrate the proposed methodology used for the calculation of probabilities of

failure. The first example involves the linear buckling of an arch structure for which
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the thickness is a random field. The second problem concerns the impact of a tube

on a rigid wall. The planarity of the walls of the tube is considered as a random field.

8.1 Basic methodology

For the sake of clarity, this section summarizes the main steps of the approach, which

are subsequently described in the following sections. The stages of the approach are

(Figure 8.1):

• Collection of snapshots and construction of the covariance matrix.

• Selection of the main features of the random field.

• Expansion of the field on a reduced basis. Sampling of the coefficients using a

uniform design of experiments (DOE).

• Construction of an explicit LSF using SVM in the space of coefficients.

• Refinement of the LSF using adaptive sampling.

• Fitting of the probability density functions (PDF) of the POD coefficients.

• Estimation of the probability of failure using Monte-Carlo simulations (MCS).

8.2 Random field characterization

8.2.1 Data collection and covariance matrix

The first step in the characterization of a random field is the collection of several

observations of the random process output (e.g., a metal sheet after forming). The

process generates a scalar random field S(
−→
X ), function of the position

−→
X . M sam-

ples, outputs of this process, are obtained. On each sample, N measurements are
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Figure 8.1: Summary of the proposed methodology for reliability assessment with
random fields.

performed at distinct positions. An example of observations, referred to as snap-

shots, is provided in Figure 8.2. The snapshots can be condensed in the following

matrix:

S =




S11 . . . S1M

...
. . .

...

SN1 . . . SNM


 (8.1)

The general term Sij is the ith measurement for the jth snapshot. A matrix Φ is

then defined, whose general term is:

Φij = Sij − S̄i, (8.2)
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where S̄i is the average snapshot vector at ith measurement point, given by:

S̄i =
1

M

M∑

j=1

Sij (8.3)

The covariance matrix C, which is a square matrix of size N , is obtained as:

C =
1

M
ΦΦT (8.4)

Because the number of measurement locations N is usually high, the covariance

matrix is large.

snapshot #1 snapshot #2 snapshot #M

N measurement points

Figure 8.2: Example of M snapshots with N measurement points.

8.2.2 Feature extraction and selection POD

Proper orthogonal decomposition (POD) is used to decompose the random field on

a basis made of the eigenvectors of the covariance matrix (Liang,Y. C. et al. (2002)).

The random field is expressed in terms of the eigenvectors (i.e. features) as:

Si = S̄ +
M∑

j=1

αijVj (8.5)
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Si is the measurement vector of the ith snapshot. Vj is the jth eigenvector of the

covariance matrix and αij are coefficients of the expansion. The eigenvectors being

orthogonal, the general expression of the coefficients is obtained by projection:

αij =
φi · Vj
||Vj||2

(8.6)

where φi = Si − S̄ is the ith centered snapshot. For normalized eigenvectors double

vertical ||Vj|| = 1, and the coefficients are:

αij = φi · Vj (8.7)

If the size of covariance matrix is large then finding the eigenvectors might be dif-

ficult. If the number of snapshots M is lower than N , the eigenvectors can be

obtained efficiently by defining a matrix C′ as:

C′ =
1

M
ΦTΦ (8.8)

The eigenvectors of the covariance matrix C can then be found as (Sirovich

(1987); Turk, M. and Pentland, A. (1991)):

Vi = ΦV ′i (8.9)

where V ′i is an eigenvector of C′. The dimensionality of the square matrix C′ being

M , the solution of the eigenvalue problem is computationally more efficient. Once

the eigenvectors of the covariance matrix are obtained, the important features are

selected by investigating the relative magnitude of the corresponding eigenvalues.

The magnitude of an eigenvalue is proportionally related to the importance of the

corresponding feature. Therefore by ranking the M eigenvalues, the MS most im-

portant features can be selected. This ranking is typically performed by inspecting

the ratio ρi of the ith eigenvalue νi to the sum of all eigenvalues (Bui-Thanh, T.

et al. (2003)):

ρi =
νi∑M
j=1 νj

(8.10)

The final expression of the expansion reads:

φ̃i =
MS∑

j=1

αijVj (8.11)
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where φ̃i is the approximate reconstruction of the ith centered snapshot. It should

be noted that the expansion containing less than M eigenvectors can only approxi-

mately reconstruct the original snapshots.

8.3 Probability density functions of the POD expansion coefficients

In order to perform probabilistic design, the PDFs of the coefficients need to be

identified using data from the M snapshots. The coefficients are calculated for each

snapshot using Equation 8.6. Thus, a distribution consisting of M discrete values

is obtained for each of the MS coefficients. It is then possible to fit Weibull or

Beta distributions to the data (Figure 8.5) that will be used subsequently for the

calculation of the probability of failure.

8.4 Reliability assessment using explicit failure boundary approximation in a gen-

eralized space

The data from the snapshots allows the characterization of the random field,

as well as the probability density functions of the POD expansion coefficients.

Thus, the task of representing spatially varying uncertainties using a set of a few

equivalent random variables is accomplished. In order to use this information for

the calculation of failure probability, an explicit failure boundary is constructed

using SVM. However, unlike previous chapters, the boundary is not constructed

in a space consisting of physical entities. Instead, the SVM is constructed in a

generalized space that consists of the POD coefficients.

For constructing the SVM, several instances of random fields (other than the

snapshots) are created by using different linear combinations of the eigenvectors.

The combinations are defined by selecting the POD coefficients using a DOE. It

is important to note that the DOE is generated in the space of POD coefficients,

and not in a space of physical variables (Figure 8.3). The bounds of the DOE are
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defined by the maximum and minimum values of the coefficients obtained based on

the snapshots. At this stage, the coefficients are sampled uniformly, and their PDFs

are not yet taken into account. This is done to obtain information uniformly over

the entire coefficient space. The DOE used for this study is generated by Latinized

Centroidal Voronoi Tessellations (LCVT) (Romero, Vincente J. et al. (2006)).

−1 −0.5 0 0.5 1
−1.5
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−0.5
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0.5
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α1

α
2

Figure 8.3: Example of LCVT DOE in the space of POD coefficients using 20
samples.

For each DOE sample αi, an instance of the random field is created. Rest of the

procedure is similar to the basic EDSD method presented in Chapter 4. The system

response is estimated for the random field instance corresponding to each sample.

The responses obtained for the DOE samples are then classified into failure or safe

categories, based on a threshold response value or by using a clustering method such

as K-means. The classification of responses into two distinct classes provides the

information needed to construct the explicit failure boundary approximation using

SVM:

s(α) = b+
N∑

i=1

λiyiK(αi,α) = 0 (8.12)

Adaptive sampling is used to refine the initial SVM constructed with the uniform
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DOE. The probability of failure is calculated using Monte-Carlo simulations in the

space of POD coefficients:

Pf =
1

NMC

NMC∑

i=1

Ig(αi) (8.13)

The indicator function Ig(α) is:

Ig (α) =





1 s(α) ≤ 0

0 s(α) > 0
(8.14)

8.5 Examples

Two examples are presented in this section to demonstrated the calculation of

probability of failure in the presence of spatially varying uncertainties, using SVM-

based EDSD. The first example consists of linear buckling of an arch structure.

The second example consists of an tube impacting a rigid wall, for which the

responses are discontinuous. The adaptive sampling scheme used for these results

is a previous version of the global update scheme without secondary samples

(Basudhar, A. and Missoum, S. (2008)).

8.5.1 Linear buckling of an arch structure

This section provides an example of the effect of a random field on the critical load

factor of an arch structure. The structure is subjected to a unit pressure load on

the top surface. The thickness of the arch should ideally be constant over the entire

surface; however it may vary due to uncertainties in the manufacturing processes.

These variations are represented, for this study, by an artificial analytical random

field (as opposed to real experimental data). The arch has a radius of R = 200 mm,

and it subtends an angle of θmax = 60◦ at the center (Figure 8.4). The width of

the arch is w = 600 mm, and in the absence of any uncertainty it has a thickness

t = 3 mm. The random field representing the deviation from the mean thickness is
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assumed to have the following form.

h(θ, z) =
1

4
cos

(
Kπθ

θmax

)
sin

(
Lπz

w

)
(8.15)

Figure 8.4: Geometry and loading of the arch structure. The bottom figure shows
the spatial variation of thickness for one snapshot.

Following the creation of the snapshots, the important features are extracted

based on the corresponding eigenvalue fractions. For example, if 200 snapshots are

created, the four first ratios of eigenvalues as defined in Equation 8.10 are 0.7208,

0.1325, 0.0800, and 0.0634. The remaining ratios are clearly very small, and can be

considered equal to zero. The analysis of the system is done by approximating the

random field with three features.

Without the change in thickness introduced due to the random field, the critical

load factor is 2.3086. When variations due to the random field are included, the

critical load of the structure may increase or decrease. To quantify the uncertainty,

the probability of having a critical load factor greater than 90% of the determin-

istic critical load factor is calculated. A critical load factor less than 90% of the

deterministic critical load factor is considered as failure.
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Random field approximation with three features

The first three features are used to approximate the random field. The corresponding

eigenvalue fractions add up to 0.933. The random field is described as:

S(α1, α2, α3) = α1V1 + α2V2 + α3V3, (8.16)

where α1, α2, and α3 are the coefficients of the expansion. The minimum and

maximum values of the coefficients, obtained from the snapshots, are given in Table

1. The PDFs of the coefficients are shown in Figure 8.5. Coefficients α1 and α2 are

fitted to Beta distributions, while a Weibull distribution is used to fit α3.
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Figure 8.5: PDF for coefficients α1, α2, and α3 corresponding to the first three
features for the arch problem.

Once the random field is characterized, the coefficients α1,α2, and α3 are sampled

uniformly using 40 initial LCVT samples. The random fields corresponding to these

configurations of the coefficients are reconstructed using Equation 8.16. The critical

load factor for each configuration is then obtained using a finite element analysis

(using ANSYS). The samples are then classified using the aforementioned failure

criteria, and the classified configurations are the training samples for SVM to predict

an initial LSF. It is then refined using the update algorithm, to construct the final

LSF with 79 samples (Figure 8.6). The convergence of the SVM update algorithm

is shown in Figure 8.7.
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Figure 8.6: Initial (top) and final (bottom) SVM limit state function for the arch
problem with three features. The brown surface is the limit state function separating
failure (blue triangles) and safe (red squares) classes.
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Figure 8.7: Convergence of the SVM limit state function update for the arch problem
with spatially varying thickness.

After obtaining the explicit limit state function, MCS is carried out to calculate

the probability of failure using the PDFs the coefficients (Figure 8.5). In order to

validate the predicted value of Pf , MCS is carried out with 104 samples while varying
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the values of K and L with their assumed distributions. Finite element analysis are

carried out at each of these samples to find the actual probability of failure. The

results are collected in Table 2.

Study of the influence of number of snapshots

In order to select the number of snapshots M , its influence on the eigenvalue frac-

tions ρi are studied for the arch problem (Figure 8.8). It is seen that there is a

significant change in the values of ρi initially. The values gradually stabilize around

a constant value. A constant value suggests that adding snapshots does not provide

much information to the random field. It is observed that the amplitude of the

perturbations decreases gradually, and a value of M = 200 is selected.
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Figure 8.8: Influence of the number of snapshots (M), shown for the first four
features of the arch problem. ρi (i = 1, 2, 3, 4) are the eigenvalue fractions corre-
sponding to the first four features.

8.5.2 Tube impacting a rigid wall

In this section the application of the proposed methodology is shown on an impact

problem. A tube of length l = 1 m (Figure 8.9) is made to impact a rigid wall with

velocity 15 m/s, and the resulting behavior is analyzed. The cross-section of the
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tube is a square with side a = 7 cm, and four masses of 25 kg each are attached to the

four rear corners. The two bottom corners in the front of the tube are constrained

in the transverse directions. The planarity of the walls of the tube are modified by

a random field given by:

h(xL, zL) =
A

1000
cos

(
3πxL
a

)
sin

(
LπzL
l

)
(8.17)

where xL and zL are the local coordinates at the four faces. xL varies between −a
2

and +a
2
, while zL takes values between 0 and −l. A and L are uniformly distributed

random variables with ranges [0.25, 0.75] m and [1, 2], respectively. The parameter

A modifies the amplitude of the random field, while the frequency is modified by L.

200 snapshots of the random field are created, by varying A and L. The important

features are then extracted using POD. The first three ratios (Equation 8.10) of

eigenvalues are 0.6985, 0.2630, and 0.0383. Only the first two features are selected

to characterize the random field.

Figure 8.9: Tube impacting rigid wall. The right figure shows the effect of the
random field.

The impact behavior of the tube falls into two main categories - crushing and

global buckling (Figure 8.10). Due to the effect of the random field, the behavior

can undergo sudden change from one state to the other. The discontinuous behavior

of the tube is shown in Figure 8.11.

It is desired that the tube should display crushing, and there should not be

any global buckling. In order to quantify the behavior, the maximum of the two
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Figure 8.10: Crushing (left) and global buckling (right) of a tube subjected to
impact.

absolute transverse displacements in x and y directions is studied. A low value

of this quantity indicates crushing behavior, while a large value shows that global

buckling has occurred. The probability of failure (global buckling), due to the effect

of the random field, is studied with a thickness of 1.5 mm. The method can also be

extended to carry out optimization by including the design variables as additional

dimensions to the space (e.g., length or thickness).
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Figure 8.11: Discontinuous behavior of the tube response with respect to the coef-
ficients of the expansion. The bottom figure shows a two-dimensional view of the
top figure.

Following the random field characterization, the coefficients α1, and α2 are sam-

pled uniformly using 60 LCVT samples, and the corresponding random field in-

stances are constructed using Equation 8.11. The ranges of the two coefficients

are [−0.0148, 0.0130] and [−0.0081, 0.0079]. The analysis is done using ANSYS LS-
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DYNA, to find the transverse displacements. The samples are then classified using

K-means clustering, and the classified configurations are used as training samples

for SVM to predict the explicit limit state function (Figure 8.12). After obtaining

the explicit LSF, the probability of failure is calculated using the PDFs of the coeffi-

cients shown in Figure 8.13. The coefficient α1 is fitted using a Weibull distribution,

while α2 is fitted with a Beta distribution. 106 MCS samples are used, and Pf is

found as 0.1243.
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Figure 8.12: Tube impact problem. SVM failure domain boundary with two features.
The black curve is the limit state function separating global buckling (blue triangles)
and crushing (red squares).
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Figure 8.13: Tube impact problem. PDF for POD coefficients α1, and α2.
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8.6 Concluding remarks

8.6.1 Summary

A technique for reliability assessment using random fields is presented in this chap-

ter. A new sampling-based method is used for constructing various potential random

field configurations. The method overcomes the need for assumption on the random

field distribution by using snapshot data and Proper Orthogonal Decomposition.

In addition the SVM-based method of constructing explicit LSFs enables one to

address discontinuous system responses, which is successfully shown in the case of

the tube impact problem.

8.6.2 Future work

One of the major limitations of the proposed method is that the correlation between

POD coefficients is not considered. There is, however, no conceptual restriction on

considering correlation in the proposed method. In the future, correlation will be

considered using transformation methods, such as Nataf and Rosenblatt transforma-

tions. In future study, the method will also be extended for carrying out probabilistic

optimization. This can be easily performed by adding the design variables as ad-

ditional dimensions of the space while constructing the decision function. In the

present study, analytical random fields have been used due to lack of experimental

data; in the future, the methodology will be applied to data obtained from actual

experiments.
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CHAPTER 9

SUMMARY, CONCLUSION AND SCOPE OF FUTURE WORK

This chapter presents a summary of the research presented in this dissertation, and

identifies certain avenues of future research generated from this work.

9.1 Summary and conclusion

Design of complex engineering systems often poses several challenges. The relation

between design variables and the system responses are seldom known explicitly,

and therefore, evaluation of several configurations or samples is required to gain

an insight into the relationship. However, response evaluation at a single design

configuration can be quite expensive, which limits the number of samples that

can be evaluated. The decision boundaries (failure boundaries or optimization

constraints) can be highly nonlinear, due to which several sample evaluations may

be required to determine them accurately. This becomes even more challenging

when multiple failure modes are present. Further challenges are faced in cases

with discontinuous or binary responses that hamper most current techniques. As a

result of these difficulties there is a need to develop newer methods for optimization

or reliability assessment that can address all the issues together, which was the

motivation for this research.

The main contribution of this work is the development of a new classification-

based methodology that can be used for the approximation of failure domain

boundaries and the zero-level contours of optimization constraints. The proposed

approach referred to as explicit design space decomposition is a major shift from

existing methods. In most current methods, the values of responses are important.
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However, in the proposed method, only classification information of the responses

is required for constructing the decision boundaries. As mentioned in Chapters 2

and 4, the classification-based approach has major advantages when the responses

are discontinuous or binary.

A class of machine learning techniques referred to as support vector ma-

chines (Chapter 3) is used to construct the explicit decision boundaries. The

boundaries constructed with SVM can be highly nonlinear. Also, a single

SVM can be used to represent several failure modes, which is an advantage.

Thus, the proposed SVM-based EDSD approach presents a natural way to handle

problems with discontinuous and binary responses, as well as multiple failure modes.

In order to address the issue of limiting the computation cost, several adaptive

sampling techniques have been developed in this research. The basic components

of adaptive sampling were presented in Chapter 4. The basic EDSD method and a

global update scheme to refine the SVMs was presented in this chapter. However,

it may not be necessary to refine the decision boundaries over the entire space.

Instead, identifying regions of importance can save a lot of samples. For this

reason, a local update scheme for RBDO was presented in Chapter 5. An adaptive

sampling scheme specifically designed to calculate probabilities of failure was also

presented in this chapter. This update scheme was also used as part of the RBDO

algorithm.

Because the construction of SVMs is based on a design of experiments, in

general it has an error associated with the approximation of decision boundaries.

This issue is addressed in Chapter 6, in which a modified probabilistic SVM model

is presented that provides a measure of confidence on the SVM prediction. More

specifically, it can be used to obtain the probability of misclassification by SVM

at any sample. This information is used to provide an MCS-based probability of

failure that is relatively conservative compared to the one using a deterministic SVM.
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In Chapter 7, the modified PSVM model is also used in the development of a

constrained efficient global optimization (EGO) method. The adaptive sampling

schemes presented in Chapter 4 and 5 were focused on the accurate approximation

of failure domain boundaries and optimization constraints. However, in general the

objective function may also be expensive and require approximation. This issue

is addressed in Chapter 7. The objective function is approximated using Kriging,

whereas the zero-level constraint contours are approximated using SVM. The

constrained EGO formulation requires the calculation of probability of feasibility,

which is provided by the PSVM.

Finally, in Chapter 8, the SVM-based EDSD method is extended to the cal-

culation of probability of failure in the presence of spatially varying uncertainties,

represented with random fields. For this purpose, the random field is represented

in terms of a few random variables, which are the coefficients of proper orthogonal

decomposition (POD) expansion of the field. The SVM boundaries are then

constructed in the space of POD coefficients. Probability density functions of the

coefficients are determined from the observations.

Based on the studies made and reported in the different chapters, the following

generalized conclusions are made:

• The proposed SVM-based EDSD method can provide a solution to various dif-

ficulties faced in optimization and reliability assessment. It handles problems

with discontinuous and binary responses, and multiple failure modes. Ap-

plication to discontinuous responses was demonstrated through the nonlinear

arch buckling problem in Chapter 4, as well as the tube impact problem in

Chapter 8. Application to multiple failure modes was demonstrated through

the tolerance optimization example in Chapter 4, as well as through analytical

test examples in Chapters 5 and 7.
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• The adaptive sampling schemes in Chapters 4, 5 and 7 can accurately approx-

imate highly nonlinear decision boundaries. Accuracy of the adaptive schemes

was validated through several analytical test examples. The global update

scheme has been tested up to seven dimensions.

• Identification of important regions in the space allows one to construct an

accurate SVM in those regions, without wasting samples in other unimportant

regions. This was demonstrated in Chapters 5 and 7. The examples showed

the refinement of SVM boundaries in selected regions.

• Although there may be an error associated with an SVM, in general, it is

possible to provide an error margin using a PSVM. PSVM can be used to

provide a relatively conservative probability of failure compared to the one

using a deterministic SVM. Unlike the traditional safety factor, which is usu-

ally constant, the measure of conservativeness referred to as probability factor

depends on the amount of available information.

• It is possible to use SVM constraints within an EGO framework for perform-

ing optimization in problems with both expensive objective function and con-

straint functions. Because the constraint handling is based on SVM classifica-

tion, it allows EGO to be performed for discontinuous and binary responses.

Also it simplifies multiple constraint problems, as all the constraints can be

approximated with a single SVM.

• In Chapter 8, it was shown that the SVM-based method is not limited to

reliability assessment for spatially invariant uncertainties. It can also be used

for reliability assessment with random fields.

9.2 Scope of future Work

The methods presented in this dissertation provide the first steps for classification-

based reliability assessment and optimization. There are several improvements that
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can be performed in the future research. These are discussed in this section.

9.2.1 Improvement of adaptive sampling schemes for refining SVMs

Several improvements are possible in the adaptive sampling process. One of the

obvious extensions would be to use multifidelity models for the update. With

complex engineering systems, very often different models with various levels of

fidelity are available. For example, actual experimental testing or a finely meshed

nonlinear finite element model can be examples of high fidelity. Lower fidelity

models can obtained using different methods, such as using a coarse mesh, linearity

assumptions, response approximations etc. Because a low fidelity model is cheaper

to evaluate, several samples can be evaluated through it to get an initial idea.

Selected samples can then be evaluated through the high fidelity model to update

the approximated decision boundaries. If the low fidelity model is a response

approximation, such as Kriging metamodel, then it is also possible to combine the

sampling criteria for the approximation and classification approaches.

Apart from the use of multifidelity models, other improvements may also be

possible in the sampling criteria. For example, the use of PSVMs for adaptive

sampling needs to be explored in more detail. The threshold δpm in Equation

B.6 can be be used to control how far or close to the current SVM boundary the

adaptive sample will be selected. The threshold may be varied as the algorithm

progresses. A study needs to be performed to assess the effect of the parameter.

9.2.2 Improvement of sampling criteria for constrained EGO

The constrained EGO formulation in Chapter 7 was based on the basic EI sampling

criterion to asses the improvement of objective function. The focus of the chapter

was to introduce a new method of handling constraints using PSVMs. However,
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several criterion other than the EI can also be found in the literature (Sasena,

M.J. (2002); Forrester, A.I.J. et al. (2008)). These criteria may be included in the

algorithm to increase its efficiency.

9.2.3 Improvement of the method for providing error margin for SVM

In Chapter 6, a modified PSVM model was presented. The basic aim of including

the information about spatial distribution of samples was achieved. While the

comparison of errors for analytical examples shows significant improvement over

previous models, further research may be performed to explore modifications

of the model for achieving smoother variation of the conditional probability

P (+1|x) over the space. PSVM was also used to provide a relatively conser-

vative measure of the probability of failure. A region Ωmisc for considering the

probability of misclassification of Monte Carlo samples was identified for this

purpose. This region was, however, defined based on the distance d+(x) and

d+(x), which were calculated based on a single nearest neighbor. Use of K nearest

neighbors or gradient information of SVMs may be useful to have a smoother region.

9.2.4 Consideration of correlation between variables

This dissertation was devoted to the development of the basic SVM-based EDSD

method and adaptive sampling schemes to improve its efficiency. A very important

issue has not been addressed, which is the consideration of correlation between vari-

ables. However, this does not limit the scope of application of the developed meth-

ods. Transformation methods exist for converting correlated variables to equivalent

uncorrelated variables. Therefore, EDSD can be performed in the space of trans-

formed variables. Initial work for calculating probabilities of failure with correlated

variables has already been performed in Jiang, P. et al. (2011). Nataf transforma-

tion was used in this work to obtain equivalent standard normal variables. Copulas
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other than the Gaussian one may be used in the future.
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APPENDIX A

ADDITIONAL DETAILS OF UPDATE SCHEMES FOR PROBABILITY OF

FAILURE CALCULATION AND RBDO

A.1 Determining whether a primary sample xmm will be evaluated in probability

of failure update

The steps to check whether to evaluate a primary sample xmm in step 1 of the failure

probability update (Chapter 5) are presented in Algorithm A.1. The maximum

possible change in probability due to this sample is calculated by considering the

two cases with class label +1 or −1. If the maximum change is less than certain

threshold δ2, this region is considered a candidate for SVM locking. Therefore, the

possibility of selecting a sample to remove SVM locking (Section A.2), with xmm as

the center, is checked based on the same evaluation criterion. The locking removal

sample is evaluated if it satisfies the threshold δ2. However, even if the maximum

probability change due to this sample is less than δ2, it does not guarantee the

absence of SVM locking. Also, if neither xmm nor the locking removal sample are

evaluated then it is likely that xmm will be selected at the same position in the next

iteration. Therefore, to avoid such scenario, if the locking removal sample does not

satisfy the evaluation criterion then xmm is evaluated irrespective of the change in

probability.

Algorithm A.1

1: Estimate the new probabilities of failure P
(k)
f+ and P

(k)
f− assuming that xmm be-

longs to class +1 and -1 respectively.

2: if max

( ∣∣∣P (k)
f+−P

(k−1)
f

∣∣∣
P

(k−1)
f

,

∣∣∣P (k)
f−−P

(k−1)
f

∣∣∣
P

(k−1)
f

)
> δ1 then
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3: Evaluate xmm.

4: else

5: Do not evaluate xmm.

6: Locate a sample xsecondary using the steps in Section A.2, with xmm as the

center. ymm is assigned the sign of the closest sample to solve for the new

sample.

7: Estimate the new probabilities of failure P
(k)
f+ and P

(k)
f− assuming that xsecondary

belongs to class +1 and -1 respectively.

8: if max

( ∣∣∣P (k)
f+−P

(k−1)
f

∣∣∣
P

(k−1)
f

,

∣∣∣P (k)
f−−P

(k−1)
f

∣∣∣
P

(k−1)
f

)
> δ1 then

9: Evaluate xsecondary.

10: else

11: Evaluate xmm.

12: end if

13: end if

A.2 Refinement of SVM boundary s
(k)
p = 0

The construction of SVM boundary s
(k)
p = 0 requires information about the

probability of failure at various configurations in the space. The probability of

failure is calculated based on the SVM boundary s
(k)
d = 0 that approximates the

limit state function. The steps for selecting samples for constructing s
(k)
p are:

Step 1: In addition to the initial DOE, use all samples used for constructing s
(k)
d

in the approximation of s
(k)
p = 0 also. P

(k)
f is evaluated at each of these samples

with the SVM s
(k)
d = 0, using MCS.

Step 2: Define an update region for selecting additional samples. For phase 2, the

update region is based on the probability density functions of the random variables.

For phase 1, the update region is a hypersphere. Radius of the update region,
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centered at xp, is:

Ru = max

(
∣∣∣∣x(k)

p − x(k−1)
p

∣∣∣∣ ,
∣∣∣∣x(k)

p − x+1

∣∣∣∣ ,
∣∣∣∣x(k)

p − x−1

∣∣∣∣ , 0.5
(
V

N

) 1
d

,
∣∣∣
∣∣∣x(k)

p − x
(k)
d

∣∣∣
∣∣∣
)

(A.1)

The radius is defined such that the update region encompasses the deterministic

and probabilistic optima. It also requires the update region to consist of at least

one sample from each class, which is a sufficient condition for the SVM s
(k)
p = 0 to

pass through it. The critical value based on the volume V of the space and the

number of samples ensures that the radius is not too small.

Step 3: Select primary and secondary samples within the update region, based

on the SVM s
(k)
p = 0. Calculate P

(k)
f at these samples, classify the samples and

reconstruct SVM to update s
(k)
p = 0.
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APPENDIX B

ADDITIONAL DETAILS OF SVM-BASED EFFICIENT GLOBAL

OPTIMIZATION AND DERIVATION OF EXPECTED IMPROVEMENT

B.1 Derivation of expected improvement

Derivation of the expected improvement (EI), used in Chapter 7 is presented in this

section. The improvement function I(x) is defined as the difference between the

objective function values at the current optimum and at x:

I(x) = max (0, f ? − f)

=





f ? − f f ? ≥ f

0 f ? < f
(B.1)

The expected improvement is calculated as the expectation of I(x):

EI(x) =

∫ f?

−∞
(f ? − f)f̂(x)df

=

∫ f?

−∞
(f ? − µf + µf − f)f̂(x)df

=

∫ f?

−∞
(f ? − µf )f̂(x)df −

∫ f?

−∞
(f − µf )f̂(x)df

=

∫ f?

−∞
(f ? − µf )φ

(
f − µf
σ

)
df −

∫ f?

−∞
(f − µf )φ

(
f − µf
σ

)
df (B.2)

Integrating by parts, the EI reduces to:

EI(x) = (f ? − µf )Φ
(
f − µf
σ

)
− σ

∫ f?

−∞

f − µf
σ

φ

(
f − µf
σ

)
df (B.3)
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For Gaussian distribution,

φ(t) =
1√
2π
e−

t2

2

dφ

dt
= −tφ(t)

φ = −
∫ t

−∞
tφ(t)dt (B.4)

Substituting in Equation B.3,

EI(x) = (f ? − µf )Φ
(
f ? − µf
σf

)
+ σfφ

(
f ? − µf
σf

)
(B.5)

B.2 Selection of primary samples based on PSVM

The procedure to select a primary sample xp in the update scheme 3 of SVM-based

EGO (Chapter 7) is presented in section. A primary sample is selected in a sparsely

populated region with high probability of misclassification. However unlike the

method in Chapter 4, in which the samples are selected on the SVM boundary, the

regions of high misclassification probability are identified using the modified PSVM

(Chapter 6). The optimization problem to locate xp is:

max min
x

d(x)

δpm − Pm(x) ≤ 0

||x− x?|| −Ru ≤ 0 (B.6)

where d is the distance to the closest training sample, Pm is the probability of

misclassification. By default, the threshold δpm is equal to 0.5, but it is reduced

until a feasible solution to the Equation B.6 is obtained. The misclassification

probability Pm is calculated using the PSVM:

Pm(x) =





1− P (+1|x) s(x) ≥ 0

P (+1|x) s(x) < 0
(B.7)

The optimization problem in the Equation 4.3 is solved using a GA. The initial

population is given by a local CVT with 100m samples, generated in a hypercube
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circumscribing the update region centered at x?.

B.3 Comparison of EGO results using classification and approximation based con-

straint handling

In this section, the results using the SVM-based EGO (Chapter 7) are compared

to the ones using Kriging-based constraint approximation Sasena, M.J. (2002).

The comparison is performed for the example in Section 7.3.1. Table B.1 lists

the distances between the predicted and the actual optimum using the different

methodologies at the same number of function evaluations. The mean values of

||x? − x?actual|| after 50 sequential evaluations are provided for each case. The

solutions converging to the local optimum are omitted.

Several formulations are used for the Kriging-based approach. The first for-

mulation uses the probability scaled EI (Schonlau, M. (1997)). The second one

involves the constrained maximization of the EI. The constraints are based on the

mean values of the Kriging models for the constraints. The final method is based

on the expected violation of the constraints (Audet, C. et al. (2000)). For each of

the methods, the constraints are treated in two ways for this multiple constraint

problem. The first approach uses a Kriging model for each constraint (denoted by

the subscript v) and the second one uses a single Kriging model for the maximum

of all the constraints (denoted by the subscript s). It is seen that the results are

fairly accurate using all the methods (SVM-based and Kriging-based). The accuracy

of some of the Kriging-based methods is relatively higher for the same number of

evaluations. However, the SVM-based method has the additional advantage of han-

dling discontinuous and binary constraint functions. Also, the proposed SVM-based

approach being in its early stages, there is ample scope for improvement. It should

also be noted that the update scheme 3 also finds the optimum with similar number

of function evaluations. However, because xEI , xp and xs are evaluated in parallel,
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this only corresponds to 17 iterations of the update. In addition to the mean values

listed in the Table B.1, the best solutions using the four SVM-based schemes are

also noted. The errors are 4.1 × 10−3, 7.0 × 10−4, 2.4 × 10−2 and 5.5 × 10−3 using

the update schemes 1, 2, 3a and 3b respectively.

Method ||x? − x?actual||
Kriging Probabilityv Sasena, M.J. (2002) 2.2× 10−4

Kriging Probabilitys Sasena, M.J. (2002) 2.2× 10−4

Kriging meanv Sasena, M.J. (2002) 2.8× 10−5

Kriging means Sasena, M.J. (2002) 2.2× 10−4

Kriging EVv Sasena, M.J. (2002) 1.8× 10−1

Kriging EVs Sasena, M.J. (2002) 2.5× 10−1

SVM scheme 1 1.09× 10−2

SVM scheme 2 9.8× 10−3

SVM scheme 3a 3.45× 10−2

SVM scheme 3b 2.43× 10−2

Table B.1: Example 1. Distance between x? and x?actual after evaluating 60 samples
(10 initial). The SVM update schemes 3a and 3b evaluate 3 samples in parallel and
the results after 17 iterations are given for these cases.
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