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Abstract This paper presents a methodology for con-
strained efficient global optimization (EGO) using support
vector machines (SVMs). While the objective function is
approximated using Kriging, as in the original EGO formu-
lation, the boundary of the feasible domain is approximated
explicitly as a function of the design variables using an
SVM. Because SVM is a classification approach and does
not involve response approximations, this approach alle-
viates issues due to discontinuous or binary responses.
More importantly, several constraints, even correlated, can
be represented using one unique SVM, thus considerably
simplifying constrained problems. In order to account for
constraints, this paper introduces an SVM-based “probabil-
ity of feasibility” using a new Probabilistic SVM model.
The proposed optimization scheme is constituted of two
levels. In a first stage, a global search for the optimal solu-
tion is performed based on the “expected improvement”
of the objective function and the probability of feasibility.
In a second stage, the SVM boundary is locally refined
using an adaptive sampling scheme. An unconstrained and
a constrained formulation of the optimization problem are
presented and compared. Several analytical examples are
used to test the formulations. In particular, a problem with
99 constraints and an aeroelasticity problem with binary
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output are presented. Overall, the results indicate that the
constrained formulation is more robust and efficient.
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1 Introduction

Surrogate-based optimization using response surfaces or
metamodels has gained popularity during the past two
decades (Simpson et al. 2008; Queipo et al. 2005; Huang
et al. 2006; Viana et al. 2010a; Wang and Shan 2007,
Kleijnen 2009; Jin et al. 2003). Recently, efficient global
optimization (EGO) (Jones et al. 1998) has emerged as one
of the most promising approaches for costly simulators.
EGO is based on the approximation of responses using a
Gaussian process (e.g., Kriging (Cressie 1990; Stein 1999)).
The key feature of this technique stems from the availabil-
ity of the variance of the prediction over the entire search
space. From this information, an “expected improvement”
of the objective function can be assessed. The optimal solu-
tion is then found by maximizing the expected improvement
using a global search.

In its original formulation, EGO was developed for
unconstrained optimization (Jones et al. 1998). Subse-
quently, EGO was extended to constrained optimization
(Schonlau 1997; Sasena et al. 2002a, b; Audet et al. 2000;
Sasena 2002; Bichon et al. 2009). In these studies, both the
objective function and the constraints were approximated
using Kriging. Despite promising results, however, there
are still significant challenges for an efficient constrained
optimization. The main difficulty lies in the definition of
a general convergent scheme that simultaneously minimizes
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the objective while satisfying approximated constraints with
a reasonable number of function evaluations. The hurdles
become even more pronounced as the number of constraints
increases or when binary and discontinuous responses are
present. Another difficulty appears when the constraints are
correlated (Forrester et al. 2008).

This work investigates a new approach to perform con-
strained EGO which addresses the aforementioned issues.
The fundamental idea is to combine the approximation
of the objective function with a classification approach to
handle the constraints. More specifically, the objective func-
tion is approximated using Kriging (Cressie 1990) while
the boundary of the feasible space is constructed explic-
itly using a support vector machine (SVM) (Vapnik 1998;
Gunn 1998; Cristianini and Shawe-Taylor 2006; Scholkopf
and Smola 2002). In this setting, the constraint values
are no longer approximated, as done with surrogate-based
approaches, but simply classified as feasible or infeasi-
ble. This approach represents the basis for the explicit
design space decomposition approach (Basudhar et al. 2008;
Basudhar and Missoum 2008, 2010) developed by the
authors.

The classification approach and the construction of
explicit boundaries using SVM have several advantages,
such as the handling of discontinuous and binary responses
(Missoum et al. 2007; Basudhar et al. 2008; Basudhar
and Missoum 2009). Another major advantage of the clas-
sification approach is the reduction of several constraints
(or failure modes) to a single SVM expression. This greatly
simplifies the problem from an optimization or a reliabil-
ity assessment point of view (Arenbeck et al. 2010). In
the context of constrained EGO, this characteristic offers a
major simplification for problems with a large number of
constraints.

In the literature on constrained EGO formulations,
feasibility is enforced by complementing the expected
improvement with the notion of “probability of feasibility”
(Forrester et al. 2008; Schonlau 1997; Sasena 2002). Each
constraint, approximated by a Kriging surrogate, has a cor-
responding probability of feasibility at a given point. In
several studies, the optimization is solved as an uncon-
strained formulation that maximizes the product of the
expected improvement and the probability of feasibility. If
there are several independent constraints, the probability
of feasibility is the product of the individual probabilities.
Constrained and penalized formulations can also be found
in Sasena et al. (2002a) and Sasena (2002).

In this article, the probability of feasibility is no longer
computed based on individual constraint approximations.
Instead, the boundary of the feasible domain is approxi-
mated by a single SVM, and the probability of feasibility is
calculated using a new Probabilistic SVM (PSVM) model.
The proposed PSVM model is based on the existing Platt
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sigmoid model (Platt 1999) but also provides important
improvements. Another feature of the proposed approach
stems from the presence of two sample selection levels:
a first stage is dedicated to the global search of the con-
strained optimum while a second stage is focused on the
local refinement of the SVM approximating the bound-
ary of the feasible space. In order to maintain consistency
with the literature of purely Kriging-based approaches,
this article introduces and compares an unconstrained and
a constrained formulation of the SVM-based constrained
EGO.

The article is organized as follows. A brief summary of
the proposed method is presented in Section 2. A back-
ground on unconstrained and constrained EGO is provided
in Section 3.1. Section 3.2 introduces SVMs and PSVMs.
The proposed methodology for EGO based on SVM and the
modified PSVM model are presented in Section 4. Finally,
several test examples are considered in Section 5 to validate
the efficacy of the proposed methodology. An analytical
example is used to compare the SVM-based approach to
existing results from the literature. An analytical example
with 99 constraints is presented to show the efficacy and
efficiency of the approach to tackle multiple constraints.
For these problems, both constrained and unconstrained for-
mulations are compared. The method is also compared to a
technique with a random forest classifier (Gramacy and Lee
2010; Lee et al. 2010) to tackle binary problems. The last
example is an engineering application with five variables
dealing with the optimal design of a wing with stability con-
straints. A study of the effect of the size of the initial design
of experiments, as well as another analytical example are
also provided in the Appendices A and B.

2 Summary of the proposed approach

As mentioned in the introduction, the proposed algorithm
is constructed around two main notions: The expected
improvement (E/) and the probability of feasibility (see
Section 3). While the notion of expected improvement is
identical to the one found in traditional EGO, the main nov-
elty of this work stems from the use of SVM to approximate
the boundary of the feasible region and to calculate the prob-
ability of feasibility. The main features and advantages of
the SVM-based algorithm are:

e The boundary of the feasible domain is constructed
using an SVM which is a classification (feasible or
infeasible) approach. Thus, problems with discontinu-
ities and binary outputs can be treated (Basudhar et al.
2008).

e As aresult of the classification approach, several con-
straints can be reduced to one single SVM (Arenbeck
et al. 2010).
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Fig.1 Summary of the
proposed constrained efficient
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global optimization using SVM

Sampling stage 1
(Section 4.1.1)

Constrained optimization problem based on ET and
probability of feasibility using PSVM

Unconstrained or
formulation(Equation 13)

solved as

Constrained
formulation(Equation 14)

|

Sampling stage 2
(Section 4.1.2)
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SVM boundary approximation

|

Evaluation of the objective function and constraint responses at all the samples selected in stages 1 ||
and 2. Update of Kriging, SVM, and PSVM

e The probability of feasibility is calculated using a prob-
abilistic SVM (PSVM) (Section 3.2). Because the fea-
sible domain is represented with one single SVM, the
probability of feasibility can be calculated even in the
case where the constraints are correlated.

e The optimization is a two level process: a first stage
explores the space globally to find the constrained opti-
mum while a second stage refines the SVM boundary
locally within an update region.

For completeness and consistency with the literature (see
Section 3), this article compares a constrained and an uncon-
strained formulation of the first stage of the algorithm. A
summary of the proposed study is provided in Fig. 1 with
the corresponding sections. The detailed description of the
algorithm is provided in Section 4.

3 Background
3.1 Efficient global optimization (EGO)

This section provides a background and a short literature
review on efficient global optimization (EGO) for uncon-
strained and constrained problems. For a broad overview of
Kriging-based optimization, the reader is referred to exist-
ing extensive reviews (Forrester and Keane 2009; Kleijnen
2009).

3.1.1 Unconstrained EGO

The original EGO formulation was developed to solve
unconstrained optimization problems (Jones et al. 1998).
The basic idea of EGO is to build a Gaussian process model
(e.g., Kriging) (Chiles and Delfiner 1999; Santner et al.
2003; Rasmussen and Williams 2005; Jones et al. 1998) of
the objective function and to update this model by select-
ing additional samples that have the highest “likelihood” of

minimizing the objective function. This is made possible by
the fact that a Gaussian process provides the variance in the
prediction assuming a normal distribution. This allows one
to calculate an expected improvement (E ) of the objective
function. Samples are then selected by maximizing E/. The
following provides the derivation of E 1.

Consider a response function wgc(x). The corresponding
Gaussian process approximation is:

W(x) =hx)7 g+ Z(x) (1

where h is the trend of the model (e.g, a linear trend as used
in this work), B is the vector of trend coefficients, and Z
is a stationary Gaussian process based on the correlation
between samples. The covariance between any two samples
a and b is defined as:

cov[Z(a), Z(b)] = 02 R(a, b) )

where a% is the variance of the Gaussian process Z and R is
the correlation function. Among the possible choices of cor-
relation functions (Rasmussen and Williams 2005), a widely
used form for R is the exponential correlation function:

R(a, b) —=e Z;‘n:l 0;la; —b; |17i (3)

where m is the number of dimensions and 6; is the scaling
parameter for the i dimension. The parameter p; deter-
mines the smoothness of the correlation function (e.g., p; =
2, as used in this article, is a Gaussian correlation). The 6;
values are determined by maximum likelihood (Jones et al.
1998; Martin and Simpson 2005). At any point X, the mean
prediction 14, (X) and variance 03) (x) of the response are:

tw(x) =hx)7 B +rx) R (w-Fp) )
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oi(x):a%—[h(X)T I'(X)T][F Ri| |:r(:):| ©)

where r(x) is the vector of covariance between x and all
the training samples, R is a matrix consisting of the pair-
wise covariances between all the samples, w is the vector of
response values at the N samples, and F is a matrix with its
i"" row given by the trend h(x;)” calculated at the i*" sam-
ple. Further details for constructing a Kriging model can be
found in Chiles and Delfiner (1999), Santner et al. (2003),
Martin and Simpson (2005) and Bichon (2010).

The expected improvement is the expected value by
which the predicted objective function value is lower than
the current minimum:

EI(x) = E[I(x)] (6)
where [ (x) is the improvement function defined as:

I(x) = max (O, w* — w(x)) @)
where w* is the current minimum and w is a realization of

w. The expected improvement is defined as:

*

EIx) = f " " = w) fdu ®)

—00

where f;; is the normal probability density function of the
Kriging model w at point x. Figure 2 provides an example
of “probability of improvement”. For a Gaussian process
model, EI can be expressed analytically (Bichon 2010):

EIX) = (w* — 1, (X)) (“’;—‘(‘;‘)’(X)>
+ 0w (“’_—““’(X)) ©)
oy (X)

where ¢ and ® are the standard normal probability density
function and cumulative density function respectively. The
point with the maximum expected improvement is evaluated
to update the Kriging model. The maximization of E[ bal-

— Objective function
--- Gaussian process model
e Evaluated sample

\ P(uw(x) < w*)

Fig. 2 Depiction of the probability of improving the current minimum x*
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ances the exploration of sparse regions and the exploitation
of regions with low objective function values.

Several variations and improvements of the EGO sam-
pling criterion can be found in the literature Schonlau
(1997), Sasena et al. (2002a), Sasena (2002), Forrester et al.
(2008), Henkenjohann and Kunert (2007), Ponweiser et al.
(2008) and Ginsbourger et al. (2007). These works intro-
duce notions such as generalized expected improvement
(Sasena 2002), parallel evaluation of samples (Ponweiser
et al. 2008; Ginsbourger et al. 2007), or use of EGO with
other metamodels than Kriging (Viana et al. 2010b). Also,
relevant to this work, a Kriging formulation that handles
binary responses was recently developed (Picheny et al.
2008).

3.1.2 Constrained EGO implementations

In order to include constraints in the optimization, several
EGO formulations have been proposed. Schonlau (1997)
proposed the multiplication of E/ with the probability of
feasibility, calculated using a Kriging approximation for
each constraint. In the case of multiple constraints, the prob-
ability is given by the product of the probability of feasibil-
ity of each constraint. One of the concerns with the “product
formulation” is that one of the terms may dominate. As
pointed out in Sasena (2002), this may prevent sampling
on the constraint boundary where the optimum may lie. In
order to overcome this concern, the penalty method has been
used (Sasena et al. 2002a). In addition, when the constraints
are correlated, the computation of the probability of feasi-
bility requires information about the correlation that is often
not available. In many practical applications, this is a prob-
lem as the constraints (e.g., responses of a system) might
indeed be correlated.

In Sasena (2002) the maximization of EI with samples
constrained to lie in the feasible space was proposed. The
feasible space was defined based on the mean values of
the Kriging models for the constraints. Another way of
handling the constraints involves the use of the “expected
violation” (Audet et al. 2000). The expected violation is cal-
culated in the same way as the expected improvement and
provides a measure of the expected amount by which a con-
straint is violated. It is then used to penalize the expected
improvement. Augmented Lagrangian methods for handling
the constraints have also been used (Bichon et al. 2009).

A common feature of most conventional methods lies in
the use of Kriging approximations for both the objective
function, as well as for each constraint. This would pose
a problem if there is a large number of constraints. In addi-
tion, these methods would be hampered by discontinuous
or binary constraints. Note that recently, indicator Kriging
and random forest classifiers have been used in an attempt
to address these issues (Picheny et al. 2008; Gramacy and
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Lee 2010; Lee et al. 2010). A new approach of addressing
these issues, based on SVMs, is explored in this article.

3.2 SVMs and Probabilistic SVMs
3.2.1 Support vector machines

SVMs are used in this work to approximate the boundary of
the feasible space. An SVM is a classifier that can define a
highly nonlinear explicit boundary that optimally separates
two classes of samples (e.g, feasible and infeasible). The
SVM equation with N training samples is:

N
s =b+ Y LiyiK(xi,x) =0,
i=1

(10)

where x; is the i" training sample, A; is the corresponding
Lagrange multiplier, y; is the class that can take values +1
or —1, K is a kernel function, and b is the bias. For any
point x, the predicted class to which it belongs is given by
the sign of s(x). The Lagrange multipliers A; corresponding
to the support vectors are strictly positive, whereas they are
zero for all other samples. Thus, the value of s(x) depends
only on the support vectors.

Commonly used kernel functions are the polynomial and
Gaussian radial basis functions. The polynomial kernel is
used in this study and is given as:

K(x;,x) = (1 + (x;,x))” (11
For more details on SVMs, the reader is referred to Vapnik
(1998), Gunn (1998), Cristianini and Shawe-Taylor (2006)
and Scholkopf and Smola (2002).

3.2.2 Probabilistic support vector machines (PSVMs)

A deterministic SVM only provides a binary classification.
However, because an SVM is built with a limited amount
of information, the classifier might be locally inaccurate.
Therefore the class prediction might be wrong. For this rea-
son, PSVMs were introduced to provide the probability that
a sample belongs to a specific class.

The most common PSVM model is based on the sigmoid
function (Vapnik 1998; Platt 1999). For a given sample X,
the probability of belonging to the 41 class is:

1

p (+1 |X) = 1+ eAs(x)JrB

12)

The parameters A (A < 0) and B of the sigmoid function
are found by maximum likelihood. For the details on train-

ing the basic sigmoid model, the reader may refer to Platt
(1999) and Lin et al. (2007).

In this work, a PSVM is used to calculate the probability
of feasibility. It is the classification counterpart of the prob-
ability of feasibility found in the Kriging-based approaches.
Note that a secondary aspect of this work is the modification
of the sigmoid model (12) proposed by Platt (1999) and Lin
et al. (2007). The modification, described in Section 4.2,
was necessary to alleviate some of the inconsistencies found
in the PSVM model in (12).

4 SVM-based constrained EGO

A summary of the proposed SVM-based constrained EGO
method was presented in Section 2. This section provides a
more detailed description of the various steps.

In comparison to existing EGO approaches described in
Section 3.1, the main novelty of the proposed study lies
in the handling of the constraints. Instead of approximat-
ing each constraint with a Gaussian process, the boundary
of the feasible space is approximated explicitly using an
SVM. Therefore the constraints are not approximated over
the whole domain as when using a Gaussian process. The
use of an SVM for constraint handling has several major
advantages:

e Since this method eliminates the need to approximate
the constraints, it can handle problems with discontinu-
ous or binary functions.

e A single SVM is used to define all the optimiza-
tion constraints. Unlike most previous methodologies
(Section 3.1), this method does not require the mul-
tiplication of the probabilities of feasibility for indi-
vidual constraints. Therefore, the multiplicative error
propagation in calculating the probability is avoided.

e Because classification is used, only a fraction of the
constraints might need to be evaluated.

e The approach can handle dependent constraints without
explicit knowledge of their correlation.

4.1 Sample selection for constrained EGO

As already mentioned in Section 2, the algorithm consists of
two stages. The first stage is based on the expected improve-
ment and the probability of feasibility. This is the main stage
driving the optimization. In a second stage, auxiliary sam-
ples are selected within a local update region. The main goal
of these auxiliary samples is to refine the SVM approxi-
mation. The update algorithm is detailed in the following
sections and is summarized in Algorithm 1.
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Classify the samples into feasible and infeasible classes

1: Sample the space with a Centroidal Voronoi Tessella-

tion (CVT) Design of Experiments (DOE).

2: Evaluate the objective function at each sample.

3: Construct the initial Kriging model for the objective

function.

4: Classify the samples into feasible and infeasible

classes.

5: Construct the initial SVM boundary that separates the

classified samples.

6: Calculate the parameters of the PSVM model using

maximum likelihood.
7: repeat
Set w* equal to the minimum objective function value
among the evaluated feasible samples.
9:  Select a sample xg; based on the E/ and P(41|x)
using (13) (update scheme 1) or (14) (update
scheme 2).
10:  Define the center and the radius of the update region.
The center is selected as the current E/ sample
Xg7, unless the expected improvement at the sam-
ple is equal to zero. If E is zero at this sample,
then the center is selected as the evaluated feasi-
ble sample with minimum objective function value.
The radius of the region is calculated as described in
Section 4.1.2.

11:  Select n), auxiliary samples in the update region
(Section 4.1.2).

12:  Update the Kriging model for the objective function,
the SVM and PSVM with the 1 + n,, samples. These
samples are evaluated in parallel. Note that the E7
sample is evaluated only if the expected improvement
is non-zero.

: until convergence or maximum number of iterations.

(95}

4.1.1 Stage 1—selection of samples based on the expected
improvement and the probability of feasibility

In stage 1, an unconstrained and a constrained formulation
are explored to select “E [ samples” Xg;.

e Unconstrained formulation (update scheme 1): This
formulation is similar to the probability adjusted E[
method in Schonlau (1997). By defining the feasi-
ble space as the “+1” class, the iterates are selected
by maximizing the product of E/ and the probability
of feasibility defined as P(+1|x). Unlike the original
method (Schonlau 1997), the value of P (+1]x) is calcu-
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lated using a PSVM (see Section 4.2). The optimization
problem is:

max EI(x)P(+1]|x) (13)

This global optimization problem can be solved using a
Genetic Algorithm (GA), which is the method used in
this article.

o Constrained formulation (update scheme 2): In this
scheme, the probability of feasibility, based on one
single SVM, is introduced as a constraint:

max FEI(X)
X

s.t. P(+1x) > 0.5 (14)

Similar to update scheme 1, the solution of (14) requires
a global search. Note that the threshold for the proba-
bility of feasibility is set to 0.5. For a perfectly accu-
rate SVM, this value corresponds to a sample on the
boundary of the feasible domain (Fig. 3).

4.1.2 Stage 2—selection of auxiliary samples to refine
the constraint boundary approximation

The selection of samples in stage 1 using (13) or (14) is
performed globally over the whole space. Stage 2 of the
update investigates the local refinement of the SVM bound-
ary. After a sample from stage 1 is found, n, additional
samples are added in its vicinity with the purpose of refining
the SVM boundary and improving the estimate of P (+41]x).
In this work, n, is equal to the problem dimensionality
m. The auxiliary samples are selected in a hyperspherical

\ \ ‘ K
“\‘\\\\\\\‘t\“o&
\\\\ R
\
NS

0 ™
P+1x) =05 = O

Fig. 3 Selection of a sample using the maximization of E/ in regions
with at least 50% probability of feasibility
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Fig. 4 Update of the SVM constraint due to an auxiliary sample

update region centered at the current Xg;. At iteration k,
the radius Rllj of the update region is selected such that it
consists of at least one sample from either class:

Rk

w = max (dy, d-) (15)

where d and d_ are the distances to the closest +1 and —1
samples from the center of the hypersphere.

In addition, the auxiliary samples are selected in sparse
regions with a high probability of misclassification (incor-
rect class prediction) by the SVM (Fig. 4). The optimization
problem to locate an auxiliary sample is:
max d(x)

X
s.t. Pp(x) >0.5
lIx — x|l < R, (16)

PSVM based on Platt’s sigmoid model

where d is the distance to the closest training sample and
X, is the center of the hypersphere. P, is the probability of
misclassification defined as:

1 —P(+1x)
P(+1x)

s(x) >0

s(x) <0 a7

Py (x) = {

The value of 0.5 used for the probability of misclas-
sification corresponds to samples on or close to the SVM.
The probability of misclassification can be larger than 0.5,
as shown in Fig. 5. More details are provided in Section 4.2.
The following points are noteworthy:

e In general X, = xg;. However, in the case where
EI(xgy) is zero, the center of the update region is
selected as the current optimum x*, which is the sam-
ple with minimum objective function value among all

Modified PSVM accounting for sample positions

P(+1x) <1
r-
g o .
RN
N
S +1 class
\
\
\
A\ o
\
-1 class \
A /
P(+1]|x) = 0.

A

+1 class
-1
1 1

-
P(+1]x) = 0.5
(not an isoncontour

A of 5(x))

-1 class

Fig.5 Comparison of the modified PSVM with the basic sigmoid model. The shaded region in the right figure represents a region with probability
of misclassification larger than 0.5. Such regions are the ones bounded by s(x) = 0 and P(+1|x) = 0.5
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the evaluated feasible samples. This step is needed
even when the expected improvement is zero, because
the approximated feasible region might be innacurate
and needs to be further refined with auxiliary samples.
Refinement of the approximated feasible region may
lead to a non-zero E I (Xg;) in the next iteration.

e The auxiliary samples and xg; are all evaluated in
parallel.

e RFisbased on the local distances between samples and
will therefore change from one iteration to the next.

4.2 Modified probabilistic support vector machine
(PSVM) model

The calculation of the probability of feasibility requires
a PSVM model that correctly captures the possibility of
an inaccurate SVM. A commonly used model is the basic
sigmoid model given in (12) (Platt 1999). However, a
limitation of this model lies in the disregard for the spa-
tial positions of the samples. In this model, the value of
P(+1|x) depends only on s(x) values, which are dictated
by a small fraction of the samples (support vectors). Thus,
it may predict a non-zero P(41|x) even for training sam-
ples belonging to the —1 class. Another limitation is that
the value of the constant term B may bias P (+1]x) towards
one of the classes if the number of samples in that class is
much greater than the other one. In this work, a modified
PSVM model is proposed that overcomes those limitations
(Fig. 5):

1
P (+1x) = ™ i
1+eAs(x)+B<W7m>
-3
A < B <0 (18)

min(Smax, —Smin) '

where d_ (x) and d (x) are the distances to the closest —1
and +1 samples. § is a small quantity (set to 10710 in this
work) added in order to avoid numerical issues at the eval-
uated training samples. smax and syip are the maximum and
minimum values of the SVM calculated at the training sam-
ples. The proposed model is therefore dependent on both
the SVM values as well as the spatial distribution of the
samples.
The proposed model satisfies the following limit cases:

e P(+I1|x) > lifs(x) > ccordi(x) - 0
e P(+I1x) > 0ifs(x) > —occord_(x) - 0
P (+1]x) = 0.5if s(x) — 0 and d_(x) = d(x).

The upper bound on the value of A ensures that if the
effect of distances is neglected then P (41|x) > 0.95 at
the maximum SVM value and P (4+1]x) < 0.05 at the
minimum SVM value.
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The training process for the PSVM is as follows:

e The value of d (x) for a +1 sample and that of d_(x)
for a —1 sample are actually zero. However, a zero
value in (18) will result in P(+1]|x) = 0 at —1 sam-
ples and P(+1|x) = 1 at 4+1 samples, irrespective of
the values of A and B. To avoid this, during the training
process, d4+(x) and d_(x) are set equal to the distances
to the closest neighboring samples belonging to the +1
and —1 classes.

e The values of s(x), d_(x) and d(x) at training sam-
ples are used to calculate the likelihood function, which
is then maximized to find the values of A and B. The
construction and maximization of the likelihood func-
tion is identical to Lin et al. (2007), except that the
probabilities are calculated using the modified sigmoid
model.

In summary, the advantages of the new PSVM model are:

e [t considers the spatial distribution of the training sam-
ples, in addition to the SVM values.

e [t provides a more intuitive measure of P (41]x).
It avoids bias towards one of the classes due to unequal
number of training samples.

Note that the probability of misclassification based on
(17) can actually be larger than 0.5. This can happen if, for
instance, the P (+1|x) = 0.5 is locally within the —1 class
(Fig. 5).

5 Examples

The results section is composed of four examples belonging
to four distinct categories:

e A two-dimensional analytical example with three con-
straints. For this problem, results from existing methods
based on the Kriging approximation of the constraints
are available (Sasena 2002), and are used for com-
parison. This example is also used to analyze the
differences between the new PSVM model and the Platt
model. Another analytical example is provided in the
Appendix B.

e A 99 constraint two-dimensional analytical problem to
demonstrate the efficiency of the approach on problems
with numerous constraints.

e A problem with binary constraints. Comparison with
the random forest classifier (Lee et al. 2010).

e A five-dimensional aeroelasticity problem with binary
responses.

For all the analytical examples, a comparison of
the methods using the unconstrained and constrained
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Fig. 6 Example 1. Actual I
individual constraint contours
and the resulting feasible and
infeasible regions (left).
Objective function contours,
feasible space boundary, and
global optimum solution (right)

feasible

infeasible

infeasible

formulations (update schemes 1 and 2) is provided. For the
aeroelasticity application example, the update scheme 2 is
used (14). For each example, unless specified otherwise,
the initial design of experiments consists of 10 CVT sam-
ples and the update is run for a fixed number of iterations to
study the convergence. For a number of dimensions m, each
iteration consists of m 4 1 samples evaluated in parallel (one
EI sample and n, = m auxiliary samples selected within
a local update region). A genetic algorithm (GA) is used to
solve the global optimization subproblems for locating the
samples ((13), (14) and (16)).

60 ;
== mean
- = -median
50 —*— minimum j{
—8— maximum
40
30 40 50

Fig. 7 Example 1. Evolution of €; with unconstrained formulation for
50 runs

The following notation is used:

e x*and f* are the current optimum and the correspond-
ing objective function value obtained by the algorithm.

o X, and fX . are the actual optimum (analytical
solutions) and the corresponding objective function
value.

e ¢, is the relative percentage error of the optimum
objective function value at the kM iteration

If* = Lol
e = —— 2wl 100 (19)
|factual|

60
~'~'mean
- - “median

50 —*— minimum
—=— maximum

40

40 50

Fig. 8 Example 1. Evolution of €; with constrained formulation for
50 runs
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Fig. 9 Example 1.
Unconstrained formulation.
Minimum objective function
value among the m + 1 samples
in an iteration, irrespective of
feasibility (left) Maximum
constraint violation at the
corresponding sample (right).
Note that the optimum at
iteration k need not be selected
from the samples at that
iteration; it can be one of the
previous samples

Fig. 10 Example 1.
Constrained formulation.
Minimum objective function
value among the m + 1 samples
in an iteration, irrespective of
feasibility (/eft). Maximum
constraint violation at the
corresponding sample (right).
Note that the optimum at
iteration k need not be selected
from the samples at that
iteration; it can be one of the
previous samples

Fig. 11 Example 1. Map of
probability of feasibility at a
specific iteration using the basic
sigmoid PSVM model (left) and
the modified model (right). The
blue triangles and magenta
squares represent the feasible
and infeasible samples. The red
curve is the actual constraint
boundary
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Fig. 12 Example 1. Map of EI at a specific iteration (left). Cor-
responding map of EI(x)P(+1|x) using the basic sigmoid PSVM
model (center) and the modified model (right). The blue triangles and

° fkmin is the minimum objective function value among
the n), + 1 samples evaluated at iteration k, irrespective
of their feasibility.

5.1 Example 1. Problem with three constraints

This example taken from Sasena (2002) consists of two
variables x| and xp with identical ranges [0, 1]. The opti-
mization problem is:

min - f() =~ — D’ — (12 - 0.5

st g1(%) = ((x1 —3)2 + (2 +2))e ™D 12 <0

gx) =10x1 +x,—-7<0
B =@ —052+(x—052-02<0 (20

A graphical representation of the problem is provided in
Fig. 6. The problem has two optima at (0.2316, 0.1216) and
(0.2017, 0.8332). The latter one is the global optimum with
an objective function value equal to —0.7483.

Based on the 10 sample DOE, the initial relative error
in f*is 51.2%. To account for the variability due to the
GA, the unconstrained and constrained formulations are
executed 50 times. The mean, median, minimum, maxi-
mum errors € at each iteration are calculated. The evolution
of €, using the two formulations, are plotted in Figs. 7
and 8. It should be noted that the optimum objective func-
tion value at iteration k is selected from all the feasible
samples evaluated until that iteration. With the £ sample
selected using the constrained formulation, all 50 runs lead
to the global optimum. When the unconstrained formulation
(product) is used to select the E1 sample, the global optimum
is found 80% of the times, i.e. 40 times out of the 50 runs. At

magenta squares represent the feasible and infeasible samples. Note
that the E is calculated with respect to the current feasible optimum,
and it is possible to have non-zero E/ at an evaluated sample

each iteration, the minimum function value among the n, + 1
samples selected at that iteration f,;ni“ and the correspond-
ing constraint violation are also plotted (Figs. 9 and 10).

In order to give a comparison of the PSVM models,
the map of P(41|x) is plotted in Fig. 11. It shows that
the basic sigmoid model predicts unreasonably high prob-
ability of feasibility in many parts of the space. Even in
regions with infeasible samples (blue triangles), it predicts
a high probability of feasibility. This is not the case with the
modified model. The maps representing E/ and the product
of EI times the probability of feasibility are also depicted
in Fig. 12. For the modified PSVM model, the regions with
high values of the product are close to the optimum, but this
is not the case with the basic sigmoid model. As a result,
using the basic sigmoid may lead to waste of several sam-
ples. In fact, Fig. 12 (center) indicates that the use of the
basic sigmoid model will lead to repeated sampling in the
upper left corner of the space, which is not the optimum.

Table 1 Example 1. Comparison with purely Kriging-based approach
(Sasena 2002). Distance of x} ., to the solution found after evaluating
60 samples (10 from initial DOE)

Method [|x* —x

etual ||
actual

Kriging Probability, (Sasena 2002) 22x 1074

Kriging Probability; (Sasena 2002) 22x 1074
Kriging mean, (Sasena 2002) 2.8 %1077
Kriging mean, (Sasena 2002) 2.2 x 107
Kriging EV, (Sasena 2002) 1.8 x 107!
Kriging E'V; (Sasena 2002) 2.5x%x 107!
SVM scheme 1 9.4 x 1073
SVM scheme 2 4.8 %1073
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Fig. 13 Example 2. Depiction
of the actual constraint of the
original problem and the 99
constraints used to approximate
it (left). Objective function
contours, constraint and the the N
optimal solution (right) N

NN
NN

NN
e
N
D

N
L

—
infeasible

objective function
__eontours

For completeness, the results for example 1 are also
compared to those using Kriging approximations of the
constraints (Sasena 2002). The results presented in Sasena
(2002) were generated using several different methods and
the reader is referred to Sasena (2002) for a more detailed
description of the approaches. In one method, each con-
straint response is approximated using a separate Kriging
model (denoted using subscript v in Table 1). In the second
method, only one Kriging model is used to approximate the
maximum of constraint responses (denoted using subscript s
in Table 1). These approaches are further categorized based
on the sampling criterion. The first formulation uses the
probability of feasibility times the expected improvement
(Schonlau 1997). The second one involves the constrained
maximization of the expected improvement. The constraints
are based on the mean values of the Kriging models for
the constraints. The final method is based on the expected
violation (E'V) of the constraints (Audet et al. 2000). For
each case, the distance between the actual optimum and

60 T . : :
-'= mean
- - -median
50 —— minimum ||
—=— maximum
40 1
& 30| |
20+ 1
10t 1
0
0 10 20 30 40 50

k

Fig. 14 Example 2. Evolution of € with unconstrained formulation
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the optimum found by the algorithms is provided after 50
adaptive sample evaluations. These values are compared
to those using the proposed SVM-based methods after the
same number of evaluations. It should be noted that, in
the proposed method, the samples are evaluated in paral-
lel. Therefore, the iteration number at which the comparison
is performed is much less. In addition to the mean values
listed in Table 1, the best results using the two SVM-based
schemes are also noted: the minimum errors are 2.2 x 1074
and 8.6 x 107 using the update schemes 1 and 2.

5.2 Example 2: 99 constraint problem

The objective of this problem is to demonstrate how the
proposed method handles several constraints using a single
SVM boundary without the need to evaluate all the con-
straints at each iteration. This is a significant advantage
that stems from the classification approach: if a sample vio-
lates any one of the constraints then it can be classified

60 . . . :
-'='mean
- = =-median
50 : : —— minimum
—*— maximum
40 4
&30 1
20 1
10H : : 1
0 2 . .
0 10 20 30 40 50

k

Fig. 15 Example 2. Evolution of €; with constrained formulation
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Fig. 16 Example 2. 1 . . . . 3
Unconstrained formulation.
Minimum objective function 0.9 i 1
value among the m + 1 samples 0.8 i 2.51
in an iteration, irrespective of
feasibility (left). Maximum 0.7f s
constraint violation at the =
. X 0.6f %
corresponding sample (right) o \m_:
gf 0.5¢ 9: .
0.4 =
g
0.3
0.2
0.1
00 10 20 30 40 50 50

as infeasible. Therefore, it is not necessary to evaluate the
other constraints.This advantage is particularly marked if
the constraints are associated with different simulations.

A problem with 99 constraints is constructed from the
following optimization with two variables x| and x; with
ranges [—1, 1]:

min - f(x) = (x1 + 1)? + sin(4x3)

s.t. gx) = x% —x1 <0 21

The objective function and the feasible region, bounded
by a parabola, are plotted in Fig. 13. In order to approximate
the feasible space, 99 constraints are constructed as the tan-

gents to the original constraint at 99 distinct locations on

and the constraint violation at the corresponding sample are
also plotted (Figs. 16 and 17).

Note that it is possible to reorder the constraints based
on their assumed criticality. More precisely, this is done by
choosing the constraints as follows: the first constraint to
evaluate is the first violated constraint by the closest infeasi-
ble sample. If this constraint is actually feasible, the second
constraint to evaluate is the first violated constraint for the
second closest sample. This process is repeated until a con-
straint is actually violated. As a result of this procedure,
only a fraction of the total number of constraints are eval-
uated. The cumulative fraction, cf, over all iterations is
calculated as follows:

actual number of constraint
evaluations until iteration k

the parabola (Fig. 13, left). The actual optimum is located . f = (22)
at [0, 0] with an objective function value equal to 1.0. number of constraints X number
The initial relative error in the optimum objective func- of samples until iteration k
tion value is 59%. The statistics of the error over 5 runs are
depicted in Figs. 14 and 15. In addition, the value of f;™" The evolution of the fraction is depicted in Fig. 18.
Fig. 17 Example 2. 1.5 3
Constrained formulation. )
Minimum objective function
value among all samples in an 2.5F 1
iteration, irrespective of
feasibility (left). Maximum WL
constraint violation at the a 2 |
corresponding sample (right) - =
B (=)
B 5 15 .
g
0.5H CE ]
0.5t .
0 I I I I 0 *
0 10 20 30 40 50 0 10 20 30 40 50

@ Springer



214

A. Basudhar et al.

o
n

<
~
D

<
i

0.35

o
i

fraction of evaluated constraints

0.25

0'20 10 20 30 40 50

k

Fig. 18 Example 2 with 99 constraints. Cumulative fraction of evalu-
ated constraints

5.3 Example 3. Problem with binary
constraint — comparison with random forest
classifier (Lee et al. 2010)

This example presents a binary case, which is one of the
main strengths of the proposed method. This example is
taken from Lee et al. (2010), which recently also addressed
the issue of binary constraints. In Lee et al. (2010), a random
forest classifier was used to handle the constraints, whereas
an SVM is used in the proposed method. The important
difference in this example compared to previous ones is that
feasibility is defined based on whether the objective func-

1.2r

0.4

_1.2,

-2 -1.2 -0.4 0.4 1.2 2
T

Fig. 19 Example 3. Objective function contours and the constraint
boundary
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Fig. 20 Example 3. Evolution of €; with unconstrained formulation

tion returns a value at a sample. The objective function to
be minimized is:

J(x1, x2) = —c(xp)e(x2)
where c(x) = exp(—(x — 1)2) + exp(—0.8(x + 1)2)
—0.05sin(8(x + 0.1))
(23)

The feasible space is an ellipse defined by the 0.95 con-
tour of a bivariate normal probability density function with
mean at the origin, correlation coefficient —0.5 and stan-
dard deviation 0.75 (Fig. 19). The objective function is
not defined at samples outside the ellipse. The constrained
optimization has two local minima, each with a function

-'-'mean
14 1 - - -median

—*— minimum
e —&— maximum/| |

0 5 10 15 20

Fig. 21 Example 3. Evolution of €; with constrained formulation
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Table 2 Example 4. Design variables

Name Lower bound  Upper bound  Optimum
Sweep angle 6 —60° 60° 22.69°
Taper ratio A = % 0.25 1 0.3393
Semi span b/2 80 in 160 in 88.10 in
Thickness parameter k; 0 in 2in 0.3342 in
Thickness parameter k;  —5 0 —0.4447

value of —1.0916. 20 samples are used for the initial DOE.
The Kriging approximation of the objective function is
constructed only using the feasible samples (because the
objective function is considered undefined at the infeasible
ones).

The errors of the proposed method with unconstrained
and constrained formulations are plotted in Figs. 20 and 21.
The initial error is 16%. Using the constrained formulation,
the error is less than 1% at about 8 iterations, i.e. using 24
adaptively selected samples. Using the unconstrained for-
mulation, 11 iterations or 33 samples are required for 1%
error. In comparison, in Lee et al. (2010), the error was close
to 1% at 17 iterations, starting from an error of approxi-
mately 7%. In Lee et al. (2010), an iteration was completed
when a feasible sample was found. On the contrary, no such
distinction is made in the iteration count of the proposed
approach, and therefore, an exact comparison is not possi-
ble. Although 3 samples are evaluated at each iteration in
this work, the total number of samples are comparable. In
Lee et al. (2010), the final optimum was found after 47 iter-
ations (feasible samples). With the proposed method (both
constrained and unconstrained formulations), the final solu-
tion is located at the 16™ iteration in average, i.e. after 48
samples are added. Also, it should be noted that the par-
allel nature of the proposed method gives it an additional
advantage if multiple processors are available.

5.4 Example 4. Five variable aeroelasticity example
with binary output

In this problem, the geometry of a simplified aluminium
wing is optimized to minimize its weight while satisfying
two stability requirements. A design is considered feasi-
ble if no flutter or divergence instabilities occur for given

Fig. 22 Example 4. For a given

wing area, the plan form of the 7 il

wing is given by three variables:

Sweep angle 0, taper ratio [on

A= ZTI semi-span b/2 (see

Table 2) Gt
z b/2

Table 3 Example 4. Fixed parameters used in the aeroelasticity
problem

Mach number 0.5

Altitude 10,000 ft

Velocity 538.68 ft/s (match point)

Air density 3.2686 x 107 Ib/in® (match point)
Angle of attack 0

Wing area S 8 ft?

9.2418 x 10° psi
3.4993 x 100 psi
0.097464 1b/in®

Young’s modulus
Shear modulus

Density

flight conditions. This binary constraint (stable/unstable)
is evaluated through an aeroelasticity code ZAERO (Zona
Technology, Inc. 2008). Note that one single SVM is needed
for the two failure modes (flutter and divergence).

There are a total of five variables (see Table 2). The plan
form of the wing is defined by three variables: Sweep angle
0, taper ratio A, and span b (see Fig. 22). The area of the
wing is maintained constant. The thickness of the wing,
constant chord wise, is defined along the span using an
exponential function with two parameters k; and ky (24),
which are used as the two other variables of the problem.

2kyy
1(y) =kie > (24)

Table 3 lists the fixed parameters required to evaluate
each design, such as material properties and flight condi-
tions. The flight conditions are given by the altitude and the
Mach number.

0
-1
-2

;
-~

-3
-4
-5

.

2 40 20 0
0 (deg)

Fig. 23 Example 4. Example of stability boundary with respect to

sweep angle and thickness parameters k| and k». Taper ratio and semi
span are fixed at 0.625 and 120 in. respectively
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Fig. 24 Example 4. Evolution of f* value during the optimization

The structural finite element (FE) model is built using
Genesis (Vanderplaats Research & Development, Inc. 2006),
which provides the weight, mode shapes, and natural fre-
quencies of the wing. This FE model consists of 171
CQUAD4 shell elements with nine elements along the
chord. A flat panel aerodynamic model was built using
ZAERO (Zona Technology, Inc. 2008) to check the stabil-
ity at the given flight conditions. This model consists of
40 aero-boxes with five boxes along the chord. For each
mode, a damping coefficient and a frequency are calculated.
A positive damping value corresponds to flutter instabil-
ity whereas a negative damping corresponds to a stable
configuration. A zero frequency corresponds to divergence
instability. Figure 23 depicts an arbitrary example of stabil-
ity boundary in terms of sweep angle and the two thickness
parameters k1 and k». The taper ratio and semi span are held
constant to produce this figure.

In order to solve the optimization for this problem, the
update scheme 2 with the constrained formulation was used.
The initial DOE consists of 10 CVT samples. The update
scheme was run for 200 iterations. Figure 24 shows the
objective function value of the best feasible sample (i.e

Fig. 25 Example 4. Planform
of the optimal wing

i
i

0 20 40
x (cord) [in]
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Fig. 26 Example 4. Thickness distribution of the optimal wing

the minimum weight among feasible samples) during the
optimization. Note that the optimum is reached before 100
iterations. The corresponding optimum weight is 31.39 1b.
The optimal design is provided in Table 2. The corre-
sponding planform and optimal thickness distributions are
depicted in Figs. 25 and 26, respectively.

6 Discussion

The proposed work is a first step for Kriging-based con-
strained optimization using SVMs. This section presents
a discussion on the merits, limitations, and avenues of
improvements of the proposed approaches. This discus-
sion is based on the results presented in Section 5 but also
extends to broader comments.

6.1 Comparison between the two update schemes

The comparison of the unconstrained and constrained for-
mulations in this article seems to indicate that the latter is
preferable in terms of the convergence rate. This conclu-
sion is valid on all the presented results but is made clear
on Example 1. In this example, two local optima corre-
sponding to disjoint feasible regions are present. The update
scheme 2 with constrained formulation (Fig. 8) provided
the global optimum for each of the 50 runs. This was not
the case with the unconstrained formulation which reached
the global optimum 40 times out of 50 runs. The maximum
error in the plot of the relative error €; (Fig. 7) corresponds
to a case in which the update scheme 1 with unconstrained
formulation reached a local optimum. It should be noted
that this represents convergence to the local optimum, and
not failure to converge. The reason for finding the local
optimum in some of the cases is that for the initial approx-
imation, both the regions have similar £/ and probability
of feasibility. However, as the update progresses, there is a
significant region of the space where E/ is equal to zero,
and the regions with non-zero E [ have a low probability of
feasibility. It may be possible to overcome this issue if the
generalized expected improvement with a higher exponent
(more global search) is used. This, however, has not been
investigated in this study as the constrained formulation led
to satisfactory results. Overall, from the obtained results,
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the constrained formulation appears to be more robust and
efficient. This conclusion reinforces what had already been
observed and commented in the literature: the unconstrained
“product” formulation does not enforce enough feasibility
and leads to arbitrary dominance of one of the two terms.
As a consequence, the unconstrained formulation is more
likely to evaluate samples in the infeasible space than the
constrained formulation. At times, the unconstrained for-
mulation might also simply fail as demonstrated in another
example in the Appendix B.

It is also noteworthy that the results from Example 1 were
compared to those using Kriging-based constraint approxi-
mations from the literature. This comparison indicates that
the proposed approach has a comparable efficacy. However,
this is true for the small scale problem 1 with 3 constraints.
As developed in the following paragraphs, the strength of
the proposed approach stems from unique aspects of the
SVM-based approach.

6.2 Discontinuous and binary responses

SVM was introduced originally by the authors to tackle
problems with discontinuities and binary outputs. In this
article, the ability of the proposed classification-based
approach to handle binary responses is extended to opti-
mization and is demonstrated using Examples 3 and 4. In
Example 3, the proposed method is compared to another
recent approach based on random forest classifiers. Exam-
ple 4 presents an application in the field of aeroelasticity
with binary behaviour (stable/unstable).

6.3 The case of multiple constraints/failure modes

The usefulness of the proposed methodology for handling
multiple constraints is expected because it reduces the prob-
lem by replacing all the constraints with a single SVM
approximation. Because the proposed method is based on
classification, it avoids the evaluation of all the constraints
at each iteration. The proposed classification-based method
has the potential to reduce computational burden if the
constraints are evaluated using different solvers. This is
demonstrated in Example 2 with 99 constraints. In a typical
Kriging-based approach, this would require an approxima-
tion for each constraint.

6.4 Correlated constraints

In engineering problems, constraints are often correlated.
Therefore, in the traditional Kriging-based framework, the
calculation of the probability of feasibility requires some
explicit knowledge about the correlation. Traditionally, the
product of the probability of feasibility is used, thus assum-
ing that the constraints are independent. In a classification

framework, this requirement is no longer needed because
only one SVM constraint is used which implicitly contains
the correlation information.

6.5 Probability of failure calculation

One of the key attributes of the SVM-based explicit design
space decomposition stems from the construction of a
locally accurate explicit limit state function. This is made
possible by the adaptive sampling scheme developed by the
authors (the auxiliary samples). This explicit boundary can
be used for calculating failure probabilities through Monte-
Carlo simulations. This had been demonstrated in earlier
work by the authors Basudhar et al. (2008) and Basudhar
and Missoum (2009).

The following potential limitations should be noted:
6.6 Local vs. Global optimum

As mentioned earlier, the unconstrained formulation failed
at times to locate the global optimum. However, even in the
case of the constrained formulation, it is noteworthy that
there is, in general, no guarantee to converge to the global
optimum. One of the possible reasons stems from a PSVM
model that might exclude a significant region of the feasi-
ble domain and prevent the optimization to converge to the
global optimum. For this reason, the technique might fail to
locate the global optimum in cases where, for instance, the
global optimum lie in a feasible region of relatively small size.

6.7 PSVM model

Although the modified PSVM model provides an improve-
ment over the Platt’s model, some aspects need to be
refined. For instance, the proposed PSVM model might not
be smooth enough. As mentioned in the previous remark,
the proposed PSVM model might artificially exclude parts
of the search space. Other PSVM models or different tech-
niques to estimate the PSVM parameters should be inves-
tigated. As an example of metrics that could improve the
model, one could include factors such as the density of sam-
ples in a region or the number of samples belonging to a
specific class in the vicinity.

6.8 Avenues for improvement

Beside the development of an enhanced PSVM model, sev-
eral other avenues for improvements can be envisioned. For
continuous problems, one of the limitations of the clas-
sification approach is that it does not use zero or first
order information and it does not differentiate between, for
instance, a highly infeasible and an almost feasible sample.
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In this article, the adaptive sampling scheme to refine the
SVM proposed in sparse areas alleviates partly this issue.
However, for continuous problems, it may also be useful to
use the information about the value of the actual constraint
violation and gradient information. For example, it may be
advantageous to use both the data from a response approxi-
mation (e.g., a metamodel) and the SVM classifier. Another
possibility for improvement lies in the exploration of the
effect of alternate sampling criteria that have been used
in the constrained EGO literature, such as the generalized
E I (Schonlau 1997; Sasena 2002) and different correlation
kernels, as well as to investigate the evaluation of several
E1 samples in parallel (Ponweiser et al. 2008; Ginsbourger
et al. 2007). Modifications to the method are also possible
in terms of the construction of the SVM. In this study, hard
classification is used for SVMs, which is allowed due to the
fact that we are using computer experiments. However, it is
possible to use soft margins with SVMs, and to allow some
training misclassification (Vapnik 1998).

All in all, the performance of the proposed method seems
quite satisfactory based on the example problems. Its abil-
ity to address binary responses and multiple constraints
was demonstrated. Its applicability to an engineering exam-
ple with binary output was also demonstrated. It may be
interesting to compare the proposed method with indicator
Kriging, although SVM seems a more natural way to handle
binary problems, and is widely recognized by the computer
science community.

7 Concluding remarks

A method for constrained global optimization using SVM
is presented in this article. Two formulations are proposed
and compared in the results section. Both formulations
involve the expected improvement of the objective function
and a probability of misclassification calculated using a new

PSVM model. The SVM is refined locally with a ded-
icated adaptive sampling scheme. It was concluded that
the approach based on the constrained formulation (update
scheme 2) is the most robust. The efficacy of the method
was demonstrated using several analytical examples, as well
as an engineering application dealing with aeroelasticity.
Particular emphasis is placed on the ability of the approach
to handle multiple constraints, discontinuous, and binary
constraint responses. Another noteworthy advantage of the
approach is that it can handle correlated constraints.

The methodology will be extended to perform reliability-
based design optimization. The local update used in this
work provides an accurate SVM around the optimum and
thus, is expected to be advantageous for failure probability
calculation. In addition, the approach will be extended to
include models of various fidelity to improve computational
efficiency.
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Appendix A: Effect of the design of experiments size

This section presents an example of the effect of ini-
tial design of experiments on the optimization results, for
Example 2 (Section 5.2). Three sets of initial DOEs are
used, consisting of 5, 10 and 15 CVT samples to run the
optimization. The percentage relative errors in the objective
function value €; are plotted in Fig. 27 for the three cases.
The constrained formulation (update scheme 2) is used. It is
seen that for all the cases, the optimization converges within
21 iterations.
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Fig. 27 Example 2. Evolution of the relative error €; with constrained formulation with different initial DOE sizes: 5 (left), 10 (center), 15 (left)
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Fig. 28 Appendix B example. 2r
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Appendix B: Two constraint problem

This appendix provides another analytical example. The
constrained and unconstrained formulations are compared.
The example is taken from Sasena (2002), and consists of
two variables x; and x; in the range [—2, 2]. The feasible
space for this problem is bounded by two constraints. The
optimization problem is:

min  f(X)=(14+Ax] + x2 + D30 + B2x1 —3x2)%)

X

where A =19 — 14x; + 3x12 — 14xy + 6x1x7 + 3x%,
and B = 18 — 32x; + 12x} + 48x — 36x1x2 + 27x3
st g1(X) = —3x] + (=3x2)° <0
&) =x1—x2—1<0 (25)

The objective function, the constraints and the optimum
solution are depicted in Fig. 28. The actual optimum is

300 :
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—=— maximum
2001
& 150F
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ol I I R WWvraminebor P e
0 10 20 30 40 50

Fig. 29 Appendix B example. Evolution of €; with unconstrained
formulation. 50 runs

) 1 0 1 2

at (0.5955, —0.4045) with an objective function value of
289.85.

The initial error with 10 CVT samples is 261.0%. The
evolution of €; using the unconstrained and constrained for-
mulations are plotted in Figs. 29 and 30. In order to check
the consistency of the results, the algorithm was run 50
times. The mean, median, minimum and maximum errors
are provided.

As a comparison, this example was also run using a
purely Kriging-based approach where the two constraints
are also approximated by Kriging. As described in Schon-
lau (1997) and Forrester et al. (2008), the approach is based
on the product of EI times the probabilities of feasibility of
each constraint (E1(x)P(g1(x) < 0)P(g2(x) < 0)). The
run was carried out using a freely available online code
(Forrester et al. 2008). The statistics of results based on
50 runs are gathered in Fig. 31. It is observed that in the
SVM-based unconstrained approach as well as the purely
Kriging-based approach, the optimization does not always
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Fig. 30 Appendix B example. Evolution of €, with constrained
formulation. 50 runs
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Fig. 31 Appendix B example. Evolution of €, using A. Forrester’s
code (Forrester et al. 2008). 50 runs

converge accurately to the optimum. This is clearly demon-
strated on Figs. 29 and 31. This is likely due to the fact
that the gradient of the objective function is quite large
around the optimum. On the other hand, the SVM-based
constrained formulation (Fig. 30) does consistently reach
the optimum accurately.
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