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Abstract: This paper presents a methodology to calculate probabilities of 
failure using Probabilistic Support Vector Machines (PSVMs). Support Vector 
Machines (SVMs) have recently gained attention for reliability assessment 
because of several inherent advantages. Specifically, SVMs allow one to 
construct explicitly the boundary of a failure domain. In addition, they provide 
a technical solution for problems with discontinuities, binary responses,  
and multiple failure modes. However, the basic SVM boundary might be 
inaccurate; therefore leading to erroneous probability of failure estimates. This 
paper proposes to account for the inaccuracies of the SVM boundary in the 
calculation of the Monte Carlo-based probability of failure. This is achieved 
using a PSVM which provides the probability of misclassification of Monte 
Carlo samples. The probability of failure estimate is based on a new sigmoid-
based PSVM model along with the identification of a region where the 
probability of misclassification is large. The PSVM-based probabilities of 
failure are, by construction, always more conservative than the deterministic 
SVM-based probability estimates. 
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1 Introduction 

The need for reliable, increasingly complex systems has led to a growing emphasis  
on efficient methods for design under uncertainty. As a result, reliability assessment 
techniques have been steadily improving. However, it is well understood that the 
calculation of a failure probability is hampered by hurdles such as large computational or 
experimental costs, discontinuous and binary system behaviours, and multiple failure 
modes (Missoum et al., 2007, Layman et al., 2010; Arenbeck et al., 2007). 

Among reliability assessment methods, moment-based methods have been widely 
used. These include first- and second-order reliability methods (Haldar and Mahadevan, 
2000), advanced mean value method (Youn et al., 2005), and two-Point Adaptive Non-
linear Approximation (TANA) (Wang and Grandhi, 1995). These methods can, however, 
produce significant errors if the limit-state functions are highly non-linear (Bichon et al., 
2007). In the last two decades, metamodelling and response surface techniques have 
gained prominence for the calculation of failure probabilities (Mourelatos et al., 2006; 
Simpson et al., 2008). In this approach, an approximation of the system responses is 
constructed based on a design of experiments. Adaptive sampling schemes to refine the 
approximations have also been developed (Bichon et al., 2007; Wang et al., 2005; Huang 
et al., 2006). While these methods can efficiently handle non-linear limit-state functions, 
they are limited by several other difficulties. For instance, the presence of discontinuous 
(Missoumet al., 2007; Basudhar et al., 2008; Basudhar and Missoum, 2009a; Basudhar 
and Missoum, 2009b) and binary (pass or fail) (Layman et al., 2010) responses poses 
difficulties for these approximation methods. In addition, the presence of multiple failure 
modes (Basudhar and Missoum, 2009a; Basudhar and Missoum, 2009b; Arenbeck et al., 
2007) also presents a challenge. 

Recently, an alternative sampling-based method was developed by the authors to 
overcome these difficulties. The approach, referred to as the ‘Explicit Design Space 
Decomposition (EDSD)’ (Basudhar et al., 2008), classifies the responses as ‘safe’ or 
‘failed’. Because there is no response approximation, the EDSD method can be used 
irrespective of the presence of discontinuous or binary behaviour (Basudhar et al., 2008; 
Layman et al., 2010). A machine learning technique referred to as Support Vector 
Machines (SVMs) (Vapnik, 1998; Gunn, 1998) is used to construct the explicit boundary 
that separates the safe and failed samples. EDSD is also useful for multiple failure modes 
because a single SVM can be used to represent the boundary of the failure domain 
(Arenbeck et al., 2007). Adaptive sampling schemes have been developed to construct 
accurate SVM approximations using moderate number of function evaluations (Basudhar 
and Missoum, 2008; Basudhar and Missoum, 2010). Once the approximate boundary of 
the failure region has been built, failure probabilities can be efficiently assessed using 
Monte Carlo Simulations (MCS) (Basudhar et al., 2008). 

Although the recently developed methods have provided a welcome flexibility in 
reliability assessment, local or global inaccuracies in the SVM-based approximation of 
the limit-state function might lead to substantial errors in the failure probability. For this 
reason, this paper proposes to quantify the accuracy of the SVM classification model and 
propagate this information to the calculation of the probability of failure. More 
specifically, the probability of failure is calculated by weighing the traditional indicator 
function of the Monte Carlo samples by a probability of misclassification. This  
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probability of misclassification is only calculated within a region of the safe region based 
on the spatial distribution of the training samples. Therefore, the modified, MCS-based, 
measure of probability of failure is constructed so that it is always more conservative 
compared to the probability of failure based on a deterministic SVM, thus mitigating the 
consequences of an inaccurate SVM approximation. 

The probability of misclassification is obtained using a Probabilistic Support Vector 
Machine (PSVM). This paper proposes necessary enhancements to existing PSVM 
models (Vapnik, 1998; Wahba, 1999; Platt, 1999). The proposed new PSVM model, 
referred to as distance-based PSVM (DPSVM), accounts for the spatial distribution of 
data points. 

The proposed method is tested on two analytical examples. The main objective of the 
examples is to compare the probability of failure estimates to the actual probability but 
also to the case where the SVM is deterministic. This study is carried out for various 
designs of experiment sizes. 

The organisation of the paper is as follows. A review of the basic SVM-based 
reliability assessment methodology is presented in Section 2. Section 3 presents the 
proposed PSVM-based reliability assessment method. The formulation of the failure 
probability accounting for the probability of misclassification by the SVM is explained. 
Section 4 provides an overview of the current PSVM models and their limitations. In 
Section 5, the modified DPSVM model proposed to overcome these limitations is 
presented. An error measure to compare the PSVM models is provided in Section 6. 
Finally, analytical test examples are presented in Section 7 to show the efficacy of the 
proposed method, followed by a discussion in Section 8. 

2 Reliability assessment using support vector machines 

This section provides a review of the previously developed method for reliability 
assessment using SVMs (Vapnik, 1998; Gunn, 1998). SVM is a machine learning 
technique that is widely used for the classification of data. In the context of reliability 
assessment, any given configuration or sample in the space is either safe or failed. 
Therefore, the definition of the failure domain can easily be treated as a binary 
classification problem (Basudhar et al., 2008; Hurtado, 2004). An SVM is used to define 
the explicit boundary of the failure region that separates the safe and failed samples: 

=1
( ) = ( , ) = 0

N

i i i
i

s b y K�¦Ox x x  (1) 

Here, xi is the i-th training sample, Oi is the corresponding Lagrange multiplier, N is the 
number of training samples, K is a kernel function, yi is the class label corresponding to xi 
that can take values +1 and –1, and b is the bias. The optimal SVM boundary is 
constructed by maximising the ‘margin’ between ( ) = 1s �x  and ( ) = 1s �x  in a ‘feature 
space’ (Vapnik, 1998), where the boundary is linear. If a so-called hard classifier is used, 
none of the training samples can lie within the margin. Once the SVM is constructed, the 
class of any point x is predicted based on the sign of s(x). If ( ) > 0s x  (resp. ( ) < 0s x ), it 
is classified as +1 (resp. –1). 
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The main steps of the reliability assessment procedure using an SVM are as follows. 

x Sampling of the space using a Design of Experiments (DOE) (Montgomery, 2005; 
Beachkofski and Grandhi, 2002; Romero et al., 2006). 

x Classification of the samples into two classes – safe and failed. The convention is to 
denote the safe samples as +1 and the failed ones as –1. 

x Construction of the SVM limit-state boundary using equation (1). 

x Calculation of the probability of failure using MCS (Melchers, 1999) based on  
the SVM boundary. The region ( ) 0s dx  is considered as the failure region. The 
probability of failure is 

=1

1= = ( ),
NMCS

f
f g i

iMCS MCS

N
P I

N N ¦ x  (2) 

where Nf is the number of MCS samples classified as failure by the SVM classifier 
[equation (1)] and NMCS is the total number of MCS samples. Ig(x) is an indicator function 
given as: 

� �
1 ( ) 0

=
0 ( ) > 0g

s
I

s
d

®
¯

x
x

x
 (3) 

An example of failure probability calculation using SVM is shown in Figure 1. 

Figure 1 Calculation of the failure probability using an SVM (left). Misclassification of the MCS 
samples by the SVM (right) (see online version for colours) 

 

The calculation of probability of failure using the SVM-based method has several 
advantages. It is applicable to a wider range of problems compared to the current 
methods. These include problems with discontinuous and binary responses (Basudhar  
et al., 2008; Layman et al., 2010), and multiple failure modes (Arenbeck et al., 2007). 
Treating the reliability assessment process as a classification problem allows one to 
easily handle these difficulties. 
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The construction of the SVM limit-state function is based on a DOE. Therefore, there 
is, in general, an error associated with the approximation of the boundary. This can result 
in an inaccurate probability of failure (Figure 1). The following section introduces the 
use of PSVMs to estimate the probability of failure.  

3 Reliability assessment using Probabilistic Support  
Vector Machines (PSVMs) 

This section presents a method for calculating the probability of failure that accounts for 
the error associated with the SVM approximation. To do so, the probability of failure, 
evaluated using MCS, is calculated based on the probability of misclassification of the 
Monte Carlo samples in addition to the probability density functions of the variables. The 
probability of misclassification is calculated using a PSVM (Platt, 1999; Vapnik, 1998). 
A deterministic SVM (Section 2) only provides a binary classification. However, a 
PSVM provides the probability that a particular configuration (or sample) will belong to 
a specific class (+1 or –1). This probability, which is the conditional probability of 
belonging to the +1 (resp. –1) class is denoted as ( 1| )P � x  (resp. ( 1| )P � x ). 

It is noticed in equation (3) that the indicator function Ig(x) can be interpreted as the 
probability of being in the failure class based on a deterministic SVM boundary. 
Therefore, the probability of being in the failure class –1 for any Monte Carlo sample is 
either 0 or 1. It is equal to 0 for a sample lying in the safe or +1 class and equal to 1 for a 
sample lying in the failure or –1 class. The use of PSVM allows one to replace the binary 
indicator function by ( 1| )iP � x , thus leading to:  

� �
=1

1= 1|
NMCS

PSVM
f i

iMCS

P P
N

§ ·
�¨ ¸¨ ¸

© ¹
¦ x  (4) 

A relatively conservative measure of the probability of failure is obtained if the 
probability of misclassification is considered only for the Monte Carlo samples belonging 
to the safe class, that is, for ( ) > 0s x : 

� �
=1

1= 1| ,
NMCS

PSVM
f i

iMCS

P
N

§ ·
�¨ ¸¨ ¸

© ¹
¦\ x  

� � � �
1 ( ) 0

1| =
1| ( ) > 0

s
P s

d
� ® �¯

\
x

x
x x

 (5) 

In equation (5), the probability of misclassification is considered only for the samples 
lying in the safe domain based on the SVM � �( ) > 0s x . Therefore, it would naturally 
provide a probability of failure that is greater than the one using the deterministic SVM 
[equation (2)]. However, the failure probability estimate using equation (5) may be over-
conservative. Therefore, instead of considering a non-zero � �1|P � x  for the entire safe 
domain, it is reasonable to consider it only in the regions with high probability of 
misclassification. Such regions can be identified as the ones ‘lacking data’ in the vicinity 
of the SVM boundary. Therefore, the region :misc for considering the probability of 
misclassification is a sub-region of the ( ) > 0s x  regions. It is defined based on the 
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distances to the closest +1 and –1 samples and the SVM margin, which does not contain 
any samples. Outside this region, the classification provided by the deterministic SVM is 
trusted (i.e. ( 1 | )P � x  is either 1 or 0). The region :misc for considering the probability of 
misclassification by the SVM is 

� �= | ( ) |< 1 ( ( ) ( ) 0) ,misc sd s d d� �: : �: � � tx x x  (6) 

where :sd is the safe domain based on the deterministic SVM, and d+(x) and d–(x) are the 
distances of x to the closest +1 and –1 training samples. :misc consists of two kinds of 
regions in the +1 class. One is the SVM margin in the safe class and another is the region 
with ( ) ( )d d� �tx x  (Figure 2). The probability of failure is given as: 

� �
=1

1= 1| ,
NMCS

PSVM
f

iMCS

P
N

§ ·
�¨ ¸¨ ¸

© ¹
¦ J ix  

� �
� �

1
1| = 0

1|

f

sd misc

miscP

�:
°� �: �:®
° � �:¯

J
x

x x
x x

 (7) 

Figure 2 Definition of the region :misc for considering the probability of misclassification. :misc 
is the union of the two shaded regions in the left and the right figures (see online 
version for colours) 

 

The calculation of the failure probability using equation (7) requires the calculation of 
( 1 | )P � x  in the region :misc. The details of the PSVM models for calculating ( 1 | )P � x  

or ( 1 | )P � x  are presented in the following sections. 

4 Traditional sigmoid-based PSVM model 

Probabilistic support vector machines are used to map the SVM values to the probability 
of belonging to a specific class. One of the commonly used PSVM models proposed by 
Platt (1999) is based on the fitting of a sigmoid function. Some other models have also 
been proposed by Wahba (1999) and Vapnik (1998). The sigmoid PSVM model is 
presented in the following section. 
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4.1 Sigmoid model for Probabilistic Support Vector Machines (PSVMs) 

The sigmoid PSVM model proposed by Platt is presented. In this model, the conditional 
probability ( 1 | )P � x  is represented as a function of two parameters A and B:  

( )

1( 1 | ) =
1 As BP

e ��
� xx  (8) 

The parameters A (A < 0) and B of the sigmoid function are found using maximum 
likelihood. The conditional probability of correctly classifying the sample xi is � �1| iP � x  

if it belongs to the +1 class and is equal to � �1 1| iP� � x  if it belongs to the –1 class. The 
information available to train the PSVM is the class of the training samples. According to 
equation (8), the likelihood that all the training samples are classified correctly is a 
function of A and B: 

� � � �� �
=1 =1

( , ) = 1| 1 1 | ,
N Np n

i i
i i

L A B P P� � �� �x x  (9) 

where Np is the number of +1 sample and Nn is the number of –1 sample. A good PSVM 
model should provide a high likelihood of correctly classifying all the samples. 
Therefore, the parameters A and B are found by maximising L(A, B). In the work of Platt 
(1999), the log of the likelihood function was used as: 

� � � � � �
,

( 1 | ) 1 1 ( 1 | ) ,min
N

i i i i
A B i

t log P t log P� � � � � �¦ x x  (10) 

where N is the number of training samples and ti is given as: 

1
= ,

2
i

i
y

t
�

 (11) 

where yi is the class labels. Thus, t = 1 for the +1 samples and t = 0 for the samples 
belonging to the –1 class. 

4.2 Limitations of the basic sigmoid model 

One of the limitations of the model mentioned in Section 4.1 is that it depends only on 
the SVM values and not on the spatial distribution of the samples. As a result, if the 
classes of the evaluated samples are considered deterministic, it does not satisfy one of 
the conditions that requires ( 1 | )P � x  to be either 0 or 1 at these samples. Instead, it 
provides a non-zero probability of misclassification (e.g. ( 1 | ) > 0P � x  for ( ) < 0s x ) 
even for the samples that have already been evaluated. An example of the probability of 
misclassification Pmisc using Platt’s sigmoid model is shown in Figure 3. It is seen that the 
probability of misclassification is high even for regions that are far from the boundary 
and consist of already evaluated samples. 
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Figure 3 Map of the probabilities of misclassification using Platt’s sigmoid model (see online 
version for colours) 

 

5 Improved Distance-based Probabilistic Support Vector Machines 
(DPSVMs) using a modified sigmoid model 

The biggest limitation of the basic sigmoid PSVM stems from neglecting the spatial 
distribution of the evaluated samples. To overcome this issue, a modified sigmoid model 
is presented in this section. 

The proposed model depends not only on the SVM values, but also on the distances 
to the evaluated samples used to train the SVM. Because the proposed model depends on 
the spatial distribution of the samples, it is also referred to as Distance-based 
Probabilistic Support Vector Machine (DPSVM). It is assumed that in this model  
the class of any evaluated sample is deterministic. The modified sigmoid model is 
defined as:  

� �
( ) ( )

1 31 | = < , < 0,
min( , )

1
d d

As B max mind d

P A B
s s

e
� �� �
� �� �

�
�

�
� W W

x
x  (12) 

where d– and d+ are the distances to the closest –1 and +1 samples, respectively. smin and 
smax are the minimum and maximum SVM values among the training samples. W is a 
small quantity (set equal to 10–10 in this work) added in order to avoid numerical issues at 
the evaluated training sample. 

The proposed model satisfies the following boundary conditions: 

� �1| 1P � ox  if ( )s ofx  or 0d� o   

� �1| 0P � ox  if ( )s o �fx  or 0d� o   

� �1| 0.5P � ox  if ( ) 0s ox  and d d� �o   
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The upper bound on A ensures that � �1|P � x  does not have a strong dependence on the 

distances away from the boundary. That is, the values of � �1|P � x  are close to 0 or 1 far 
from the boundary irrespective of the influence of the distances. More specifically, for 
B = 0, the upper bound ensures � �1| > 0.95P � x  at the point of maximum SVM value 

smax and � �1| < 0.05P � x  at the point of minimum SVM value smin. The proof of the 
former is given below by setting B = 0: 

1 > 0.95
1 Asmaxe�

 

0.05ln
2.94 30.95< =

max max max

A
s s s

§ ·
¨ ¸ � �© ¹� |  (13) 

The strict inequality bound on B (B < 0) ensures that � �1| 1P � ox  at the +1 sample and 

� �1| 0P � ox  at the –1 sample. The proof for the two cases is given below. Setting W = 0 
for the proof, we have 

For the +1 samples, 0d� o :  

� � ( )0 ( ) ( )

1 1 11| = 1lim 1 1
1

d Asd As B
d

P
e e

e
�f �f�o �� �

� | | |
� �

�
x

x
x  (14) 

For the –1 sample, 0d� o :  

� � ( )0 ( ) ( )

1 1 11| = 0lim 1 1
1

d Asd As B
d

P
e e

e
�f �f�o � ��

�

� | | |
� �

�

x
x

x  (15) 

The training process for the DPSVM is as follows: 

x The values of d+ for a +1 sample and that of d– for a –1 sample are zero. However, 
during the training process, these are assigned as the distances to the closest +1  
and –1 samples other than the sample under consideration. 

x The values of s(x), d– and d+ at training samples are used to calculate the likelihood 
function, which is then maximised to find A and B. The optimisation is solved using 
a genetic algorithm (GA).  

Because the proposed DPSVM model accounts for both the SVM values and the spatial 
distribution of the evaluated samples, it overcomes the limitations of the basic SVM 
model mentioned in Section 4.2. A conceptual graphical comparison of the proposed 
model with Platt’s sigmoid model is provided in Figure 4. A map of the probabilities of 
misclassification is shown in Figure 5. 
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Figure 4 Comparison of the two PSVM models (see online version for colours) 

 

Figure 5 Map of the probabilities of misclassification using the modified distance-based sigmoid 
model. A comparison with the probabilities in Figure 2 shows major differences  
(see online version for colours) 

 

6 Error quantification of the PSVM model 

In order to compare the proposed DPSVM model with Platt’s PSVM model, a measure to 
quantify the error for the models is presented in this section. In the case where the actual 
limit-state function is known, ( 1 | )P � x  is known for any point and is equal to 0 or 1. 
Therefore, the error of the PSVM model can be calculated at any point. A large number 
of test points from a uniform grid are used for this purpose. Because the actual class of 
all the test points is known, the probability of misclassification for the i-th point is 

� � � �
� �

1 1| ( ) > 0
= ,

1| ( ) < 0
i i

misc i
i i

P s
P

P s
 � �°
® �°̄

x x
x

x x
 (16) 
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where xi represents the i-th test point. A good PSVM model should provide a low 
probability of misclassification for the test points. The error Etest is defined as the mean 
probability of misclassification for all the test points: 

� �
=1

1=
Ntest

test misc i
itest

E P
N ¦ x  (17) 

7 Examples 

This section presents analytical test examples to demonstrate the proposed failure 
probability measure. The examples consist of two and three variables. For each example, 
the boundary of the failure region is approximated with a polynomial kernel SVM trained 
with a CVT DOE. The degree of the polynomial is selected as the lowest without training 
misclassification (Basudhar and Missoum, 2010). For each example, the ratio of the 
probability of failure obtained with the DPSVM model to the probability obtained with 
the deterministic SVM is provided. This ratio, referred to as the probability ratio (PR), 
provides a measure of the conservativeness of the DPSVM model compared to the 
deterministic SVM. The size of the DOE is varied to study its effect on the probability of 
failure. For comparing the probabilities of failure, all the variables are assumed to have 
truncated Gaussian distributions with zero mean and standard deviation equal to 1.0. The 
lower and upper bounds of all the variables are –4.0 and 4.0, respectively. The 
probabilities of failure are calculated using 106 MCS samples for all the examples. 
Example 1 is also used to compare the DPSVM model with the Platt’s model. As 
explained in Section 6, a uniform grid is used to quantify the efficacy of the DPSVM 
model. 

The following notations are used in this section: 

x Platt
testE : test point-based error for the Platt PSVM model; 

x Modified
testE : test point-based error for the DPSVM model; 

x Actual
fP : probability of failure calculated using the actual limit-state function; 

x SVM
fP : probability of failure calculated using the SVM limit-state function; 

x Modified
fP : PSVM-based probability of failure calculated using the DPSVM model; 

x SVM
Pf
H : relative difference between SVM

fP  and actual
fP ; 

x Modified
Pf
H : relative difference between Modified

fP  and actual
fP  ; 

x PR: probability ratio 
Modified
f

SVM
f

P
P

: ratio of failure probability obtained with DPSVM 

model to probability obtained with deterministic SVM. 
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7.1 Example 1 – two-dimensional problem 

This example consisting of two variables 1 2, [ 4,4]x x � �  has two failure modes. The 
failure region, for a parallel system, is defined as:  

� �� �2
1 2 2 1= 8 2 0 tan ( 7) 4 0

12f x x x x§ ·§ ·: � � � d � � � � d¨ ¸¨ ¸
© ¹© ¹

S  (18) 

The two modes and the resulting limit-state function are shown in Figure 6. With the 
SVM-based approach, both modes are represented by a single boundary. 

Figure 6 Example 1: The left figure shows the limit-state functions for two failure modes. The 
right figure shows the net failure region (see online version for colours) 

 

In order to study the effect of the DOE size, the SVM approximations are constructed 
using 40–100 CVT DOE samples with increments of 20. A comparison of the Platt’s 
model and the proposed DPSVM model is provided in Section 7.1.1. Additionally, the 
probabilities of failure are provided in Section 7.1.2. 

7.1.1 Comparison of the PSVM models 
The two PSVM models are compared in this section based on the measure provided in 
Section 6. Sixteen hundred grid points are used to calculate the errors due to the two 
models. One example of the distribution of Pmisc values in the space for 40 samples  
is shown in Figures 3 and 5. The errors Platt

testE  and Modified
testE  are shown in Figure 7. The 

proposed modified PSVM model provides lower errors irrespective of the size of the 
DOE. 

7.1.2 Comparison of the probabilities of failure 
The probabilities of failure using varying sized DOEs are provided in Figure 8. The 
dashed-dotted green curve represents the probability of failure calculated using the 
deterministic SVMs. There is a significant variation in the failure probability depending 
on the DOE. 
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Figure 7 Example 1: Testing error for the PSVM models (see online version for colours) 

 

Figure 8 Example 1: Probabilities of failure and relative error as a function of the number of 
DOE samples. The probabilities of failure based on a deterministic SVM and the 
DPSVM model are presented (see online version for colours) 

 

The DPSVM-based probability of failure and the relative differences with respect to 
actual
fP  are also shown in Figure 8 with the solid black curves in left and right plots. The 

relative differences between the deterministic SVM-based failure probability and the actual 
one are shown with the dashed olive green curve in the right hand side plot in Figure 8. It 
is seen from the figures that the deterministic SVM-based failure probability is less than 
the actual value (red) for several cases. The DPSVM-based failure probability is always, 
by construction, more conservative than the deterministic SVM case as demonstrated by 
the probability ratios depicted in Figure 9. Note that this ratio will tend, by construction 
of the DPSVM model, to 1 as the number of DOE samples tends to infinity. 

7.2 Example 2 – Three-dimensional problem 

A three variable example consisting of four disjoint regions in the space (Figure 10) is 
presented in this section. All the variables lie between –4 and 4. The failure region is 
given as:  

2 2 2
1 2 3 1 2 3= ( 2) ( 2) 3 1 0f x x x x x x: � � � � � � d  (19) 
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Figure 9 Example 1: Probability ratio with respect to the deterministic SVM-based failure 
probability 

 

The SVM approximation of the limit-state function is constructed using 40–1000 samples 
at an interval of 40. 

Figure 10 Example 2: Actual limit-state function (see online version for colours) 

 

Similar to Example 1, it is seen in Figure 11 that the probability of failure is calculated 
using the deterministic SVM (dashed-dotted green) and PSVM shows significant 
variation with respect to the size of the DOE. Also, using the deterministic SVM, the 
failure probability is less than the actual value (red) in several cases. The DPSVM-based 
failure probabilities are always more conservative than the deterministic SVM case as 
demonstrated by the probability ratios depicted in Figure 12. As expected, the ratio 
reduces with the number of samples because the confidence in the SVM increases. By 
construction of the SVM, the ratio will tend to unity as the number of samples tends to 
infinity. 
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Figure 11 Example 2: Probabilities of failure and relative error as a function of the number of 
DOE samples. The probabilities of failure based on a deterministic SVM and the 
DPSVM model are presented (see online version for colours) 

 

Figure 12 Example 2: Probability ratios with respect to the deterministic SVM-based failure 
probability 

 

8 Discussion 

This section presents a discussion on the results presented in Section 7. 

x Conservativeness of the PSVM-based probability estimate: By construction, the 
DPSVM-based failure probability is calculated such that it is always more 
conservative than the one calculated with the deterministic SVM. Figures 9 and 12 
show the ratio of the DPSVM-based failure probabilities to the probabilities using 
the deterministic SVMs. The ratio is always greater than 1. In fact, the probability 
ratios are higher when the sparsity is greater and reduces with the size of the DOE. 
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This indicates that the confidence in the SVM increases with the amount of data, as 
expected. In addition to considering the probability of misclassification by the SVM, 
it is also useful to consider the variance of the MCS. This is done in order to check if 
there is any overlap between the DPSVM and the deterministic failure probability 
prediction. For this purpose, 99% confidence intervals of the MCS failure 
probability estimate for Example 1 are depicted in Figure 13. They show that there is 
no overlap between the deterministic and the modified PSVM model. 

x DPSVM vs. Platt PSVM model: In Example 1, the results of the comparison between 
the two PSVM models show a very clear trend. The comparison of the errors Platt

testE  
and Modified

testE  also shows lower errors. Both the errors reduce with the size of the 
DOE. However, the most important point is that, unlike the modified model, the 
Platt’s model does not satisfy the condition of having probabilities equal to 0 or 1 at 
the evaluated samples. This latter point is to be satisfied if we consider deterministic 
computer experiments and do not account for errors associated with the model. If 
uncertainties on the model itself are to be considered, the Platt’s model might  
be used. 

x Adaptive sampling: In the studies performed in this paper, significant variations of 
the failure probabilities were observed with respect to the size of the CVT DOEs. 
Apart from using PSVMs for quantifying the probability of misclassification, 
another option to reduce the errors is to use adaptive sampling for the SVMs. Several 
adaptive sampling schemes for the update of SVMs have been developed in previous 
research (Basudhar and Missoum, 2008; Basudhar and Missoum, 2010). A new 
sampling scheme is also possible based on the proposed modified PSVM model. 
Because it provides the probability of misclassification, samples may be added in 
regions with high misclassification probability. This is, however, not the focus of 
this paper. The aim of this paper is to present a measure of the probability of failure 
based on PSVM. Even with adaptive sampling, the SVM may not always be accurate 
and it might be necessary to consider the probability of misclassification using 
PSVMs. 

Figure 13 99% confidence interval of the MCS failure probability estimates for Example 1  
(see online version for colours) 
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9 Conclusion 

A method for reliability assessment using PSVMs was presented in this paper. The main 
idea is to include the probability of misclassification of Monte Carlo samples in the 
failure probability calculation. This probability of misclassification is calculated within a 
region in the safe domain defined using the spatial distribution of the samples. For this 
reason, the proposed failure probability measure is always, by construction, more 
conservative than the deterministic SVM which might present significant error. Apart 
from the failure probability measure, a modified PSVM model was also presented in this 
paper.  

The next steps of this research will study higher dimensional examples. In addition, 
research will be conducted to use PSVM for adaptive sampling. 
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