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ABSTRACT
Nonlinear Energy Sinks (NES) are used to passively reduce

the amplitude of vibrations. This reduction is made possible by
introducing a nonlinearly stiffening behavior in the NES, which
might lead to an irreversible transfer of energy between the main
system (e.g., a building) and the NES. However, this irreversible
transfer, and therefore the efficiency of the NES, is strongly de-
pendent on the design parameters of the NES. In fact, the effi-
ciency of the NES might be so sensitive to changes in design pa-
rameters and other factors (e.g., initial conditions) that it is dis-
continuous, switching from efficiency to inefficiency for a small
perturbation of parameters. For this reason, this work intro-
duces a novel technique for the optimization under uncertainty of
NES. The approach is based on a support vector machine classi-
fier, which is insensitive to discontinuities and allows one to ef-
ficiently propagate uncertainties. This enables one to efficiently
solve an optimization under uncertainty problem. The various
techniques presented in this paper are applied to an analytical

∗Address all correspondence to this author.

NES example.

1 INTRODUCTION
Nonlinear Energy Sinks (NES) have become a promis-

ing approach for the reduction of vibrations [1]. They have
several high-impact applications in fields such as earthquake
engineering [2, 3] and aeroelasticity [4]. NESs are particularly
attractive because they are passive, thus offering a higher level
of reliability than active systems. In addition, NESs are more
robust and efficient than traditional tuned mass damper (TMD)
systems and work over a larger frequency range [3].

A NES is coupled to a main system (e.g., a building), for
which one wants to reduce the amplitude when subjected to a
transient loading. The reduction of amplitude is achieved by
an irreversible flow of energy between the main system and
the NES which “captures and dissipates” this energy. This
irreversibility is made possible because of the nonlinear stiffness
property of the NES [1].
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However, irreversibility and efficiency are dictated by the
NES design parameters which need to be optimally selected. It
has also been realized that uncertainties might play an important
role in the behavior and efficiency of the NES and several
uncertainty quantification techniques such as polynomial chaos
expansions have been used [5].

In this work, it is first shown that accounting for uncer-
tainties is essential in the design of NES because the efficiency
of a NES might be discontinuous. In fact, the discontinuities
might be so marked that the NES can switch from a “high” to a
“low” efficiency for a slight perturbation of design parameters
or initial conditions. This observation implies that a specific
design optimization method is needed since techniques such as
gradient-based methods would be inadequate or would lead to a
non-robust design.

This paper proposes an optimization under uncertainty
method which starts by explicitly identifying the regions of
the design space where an “acceptable” NES efficiency is
obtained. The boundaries of this region are obtained using
a support vector machine (SVM) classifier which is trained
using a dedicated adaptive sampling scheme. This approach,
whereby regions of the space, even disjoint and non-convex, are
identified, is referred to as explicit design space decomposition
(EDSD). The use of a classification technique such as SVM
makes the approach insensitive to discontinuities and enables
one to segregate NES designs that are efficient and inefficient.
Another important aspect of this work is that NESs are not
classified as efficient or inefficient based on an a priori threshold
of a given metric (e.g., decay) but are differentiated through an
unsupervised clustering technique such as K-means, which, in
essence, detects the discontinuities. Once the SVM boundary is
constructed, the probability of belonging to the low-efficiency
region can be calculated for any point in the parameter space
using the SVM as a limit state. Subsequently, a reliability-based
design optimization (RBDO) problem can be solved.

In order to quantify the efficiency of the NES, two metrics
are used. The first one is the fraction of energy dissipated by
the NES [6]. However, this metric alone might not, a priori,
be enough to measure how efficient the NES is. For this
reason, a second metric quantifies the time needed to reach the
corresponding amount of dissipated energy.

This paper will first provide an introduction to NES and
demonstrate the presence of an efficiency discontinuity. The con-
struction of SVM based on clustering and adaptive sampling is
then presented. This is followed by a description of the calcu-
lation of probabilities of failure as well as the RBDO method-
ology. These steps will be demonstrated on a simple analytical

two DOF system. Of particular importance, the optimization will
show that it is possible to design a NES so as to maximize its ef-
ficiency while accounting for uncertainties.

1.1 Example of NES: 2 DOF System
A simple two DOF system can be used to illustrate the basic

principle of NES [6] and is depicted in Figure 1. It is composed
of a main system 1 (with angular eigen-frequency ω1, damping
λ1) and a sub-system 2 (the NES)

FIGURE 1. Example of 2 DOF system with NES

{
ẍ+λ1ẋ+ω2

1 x+ ε(x− y) = 0
ÿ+λ2ẏ+αy3 + ε(y− x) = 0

(1)

where ε is used to couple the main system and the NES. The
NES is characterized by a nonlinear (cubic) stiffness term with
coefficient α which is necessary for the energy pumping mech-
anism. Figure 2 depicts a case with irreversible energy transfer
where the NES proves to be efficient in reducing the oscillation
amplitude of the main system. Without the nonlinearity, there
would be, in general, an exchange of energy between the two
systems.

1.2 Efficiency metrics
In this article, two efficiency metrics are used to characterize

the NES. The first one is the asymptotic value of the ratio of
dissipated energy to the initial kinetic energy:

ENESin f = lim
t→∞

ENES(t) (2)

where

ENES(t) =
λ2

∫ t

0
ẏ(τ)2dτ

1
2 ẋ2

0
(3)
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FIGURE 2. Example of irreversible transfer of energy to the NES
leading to an efficient reduction of amplitude of the main system.

where ẋ0 = ẋ(0) is the (imposed) initial velocity of the main
system.

However, this metric alone might not be sufficient, as it does
not provide information about how fast the energy is dissipated.
For this reason, the time for the main system to reach 99% of its
initial energy is also computed:

t99 = t∗/
1
2 (k1x2(t∗)+m1ẋ2(t∗))

1
2 m1ẋ2

0
= 0.01 (4)

Dividing by m1:

t99 = t∗/
ω2

1 x2(t∗)+ ẋ2(t∗)
ẋ2

0
= 0.01 (5)

1.3 Discontinuity of NES efficiency metrics
The design of NES could be thought to be possible through

well-established design optimization methods. However, it has
been observed that the NES efficiency is very sensitive to uncer-
tainties. In fact, it is so sensitive that it exhibits a discontinuous
behavior. An example of a marked discontinuity is depicted in
Figure 4 which depicts the t99 metric for a number of α,ε values.
The clusters resulting from the discontinuity can be identified us-
ing a clustering technique such as K-means [7] which is instru-
mental in the proposed optimization approach. It is noteworthy
that this technique does not require an a priori knowledge about
where the discontinuity appears. The same type of behavior is
obtained when using the ENESin f metric (Figure 5).
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FIGURE 3. Example plot of ENES(t). ENESin f is the final ENES(t)
value.
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FIGURE 4. Example of discontinuity in NES efficiency as measured
by the t99 metric. Two clusters are formed (red and blue) and can be
identified without a priori knowledge using a clustering technique.

For the experiments perfromed by the authors, it is notewor-
thy that both metrics seem to exhibit discontinuities for the same
α,ε configurations. Therefore, either metric could be used to
define the failure region. However, from a computational stand-
point, the time metric typically offers more separated clusters
than the energy metric and therefore allows for a more straight-
forward identification of the regions. This can be observed from
Figure 6. Note that, the fact that the clusters are more clearly
defined for t99 might not be general and seem to happen for cases
where λ1 < λ2.

2 CONSTRUCTION OF FEASIBLE REGIONS USING
SVM
Beyond clustering of the system’s responses, we would like

to identify the region of the parameter space where the efficiency
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FIGURE 5. Example of discontinuity in NES efficiency as measured
by the ENESin f metric. Two clusters are formed (red and blue) and can
be identified without a priori knowledge using a clustering technique.
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FIGURE 6. Example of ENESin f values and t99 values. The separation
between two clusters is clearer for t99.

of the NES is “acceptable”. In other words, we would like to
find the region of the space corresponding to the cluster of better
efficiency, either using the t99 or the ENESin f metric. For this pur-
pose, we will use a technique referred to as explicit design space
decomposition (EDSD) [8, 9]. The basic idea is to construct the
boundary separating two classes of samples (e.g., belonging to
the two clusters) in terms of chosen parameters. This is achieved
using a Support Vector Machine (SVM) [10, 11] which provides
an explicit expression of the boundary in terms of the parameters.

2.1 Support Vector Machines (SVMs)
SVM is a machine learning technique widely used for

classification. In reliability assessment, SVMs are used to ap-
proximate highly nonlinear constraints and limit-state functions.
The two most important features of SVMs are their ability to
handle multiple failure modes using a single classifier and their

insensitivity to discontinuities [12].

An SVM defines an explicit boundary that separates sam-
ples belonging to two classes labeled as +1 and −1. Given a
set of N training samples xi in an n-dimensional space and the
corresponding class labels yi, an SVM boundary is given as:

s(x) = b+
N

∑
i=1

λiyiK(xi,x) = 0 (6)

where b is a scalar referred to as the bias, λi are Lagrange mul-
tipliers obtained from the quadratic programming optimization
problem used to construct the SVM, and K is a kernel function.
The classification of any arbitrary point x is given by the sign
of s(x). The training samples for which the Lagrange multi-
pliers are non-zero are referred to as the support vectors. The
kernel function K in Equation 6 can have several forms, such as
polynomial or Gaussian radial basis kernel. The Gaussian kernel
(Equation 7) is used in this article.

K(xi,x j) = exp

(
−
∣∣∣∣xi−x j

∣∣∣∣2
2σ2

)
(7)

where σ is the width parameter.
In the case of NES, the classes of the samples are defined

using the clusters to which they have been assigned. However,
this is not the only choice and the classes can also be defined
using a specific, user-defined, threshold. An initial approxima-
tion of the SVM boundary is obtained using a design of experi-
ments (DOE) [13, 14] such as Latin Hypercube Sampling (LHS)
or Central Voronoi Tessellation (CVT). The boundary is then re-
fined using an adaptive sampling scheme as described below.

2.2 Refinement of the SVM boundary. Adaptive sam-
pling.

The adaptive sampling scheme is described in detail in [8].
A fundamental aspect of the algorithm is the selection of sam-
ples in the sparse regions of the space (i.e., as far away as pos-
sible from existing samples) and also in the regions of highest
probability of misclassification by the SVM. The latter criterion
is obtained by locating the samples on the SVM. These samples
are found by solving the following global optimization problem:

max
x

||x−xnearest ||

s.t. s(x) = 0 (8)

Figure 7 depicts an example of boundary constructions for
the 2 DOF NES. The results section will provide examples of
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three dimensional boundaries constructed using both design and
aleatory variables.
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FIGURE 7. Boundary separating the two levels of NES efficiency
identified through clustering of ENESin f . Construction based on adap-
tive sampling.

3 PROBABILITY ESTIMATES
Once an SVM boundary is constructed, the probability that

a configuration belongs to a specific class (e.g., belongs to the
region of low NES efficiency) can be very efficiently obtained
through Monte-Carlo simulations [15]. Given the probability
density functions of the parameters, the probability Pf of belong-
ing to the “positive” class is approximated using NMC samples pi:

Pf =
1

NMC

NMC

∑
i=1

Is(pi), (9)

where Is is the indicator function defined as:

Is =

{
0 if s(pi)≤ 0
1 if s(pi)> 0

As an example, consider the two DOF system for which the
parameters α and ε are considered uncertain with normal distri-
butions. For various values of the means of α and ε , the probabil-
ity of belonging to the high efficiency NES region as defined by
clustering and SVM (Figure 7)is determined. 105 Monte-Carlo
samples are used.

4 RELIABILITY-BASED DESIGN OPTIMIZATION
The efficient calculation of probabilities with SVM using

Monte-Carlo simulations can be used towards the solution of

a reliability-based design optimization (RBDO) problem [12],
which in the case of a NES, could be formulated as follows:

max
µd

E(ENESin f (X
d,Xa)) (10)

s.t. P((Xd,Xa) ∈Ω)≤ PT

µ
d
min ≤ µ

d ≤ µ
d
max

(11)

where E is the expected value, µd is the vector of hyper-
parameters of the distributions of the random design variables
Xd . Xa are aleatory random variables which contribute to the ex-
pected value of the objective function as well as the probabilistic
constraints, but whose hyper-parameters are not to be optimized.
A typical choice of hyper-parameters to optimize are the means
of the normal distributions. Ω is the failure region as defined by
the SVM boundary, PT is a target probability.

Note that the probabilistic constraint in the previous prob-
lem cannot be used as such because of the noise introduced by
the Monte-Carlo simulations which would make the constraint
non-differentiable. For this reason, this constraint is typically
approximated using a response surface or a metamodel such as
Kriging. To regularize the problem further the reliability index β

is approximated instead of the probability Pf itself [12]. β can be
defined using the standard cumulative distribution function Φ:

β =−Φ
−1(Pf ) (12)

To further reduce computational time and make this RBDO
problem tractable, the objective function is also approximated
using a metamodel such as Kriging.

4.1 APPLICATION TO THE 2 DOF SYSTEM

Two RBDO problems are solved for the 2 DOF system de-
picted in Figure 1. The first RBDO problem is two-dimensional
and only contains random design variables. The second one adds
the initial velocity of the main system ẋ0 as an aleatory variable.
In both cases, the failure domain Ω is defined by the SVM con-
structed from the time metric (see Section 1.3). Throughout the
results section, the default values of parameters not used in the
optimizations are: ω1 = 1.0; λ1 = 0.01; λ2 = 0.03; ẋ0 = 1.
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4.1.1 Problem I. Two-dimensional problem.

max
µα ,µε

E(ENESin f (µα ,µε)) (13)

s.t. P((α,ε) ∈Ω)≤ 10−2

1.0≤ µα ≤ 50
0.01≤ µε ≤ 0.2 (14)

where α and ε follow normal distributions: α ∼N(µα ,4.92)
and ε ∼ N(µε ,0.0192).

In order to have a better understanding of the problem,
ENESin f is plotted over the whole search space (ε , α) (Figure
8). The plot clearly shows that an unconstrained deterministic
optimization of the energy might lead to a non-robust design. In
fact, with the random distributions provided, this design would
have a 10% probability of “switching” to the other side of the
discontinuity where efficiency is low. Therefore, the problem
is constrained by the SVM-defined failure region (Figure 9)
constructed using adaptive sampling. From this SVM, the
probability of being in the failure space is depicted in Figure 10
through the reliability index β . The optimal result is depicted
in Figure 11 and is summarized in Table 1. At the optimum,
the (approximated) probabilistic constraint is active. The actual
probability of failure, as calculated based on the SVM is also
provided in the table.
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FIGURE 8. ENESin f as a function of α and ε (initial velocity of the
main system ẋ0=1). The deterministic optimum is shown (blue dot). A
small perturbation in design parameters from this optimum could result
in an inefficient NES.

4.1.2 Problem II. Three-dimensional problem with
aleatory variable. The second optimization problem in-
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FIGURE 9. Boundary separating the two levels of NES efficiency
identified through clustering on t99. Construction based on adaptive
sampling.
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FIGURE 10. Training points and Kriging approximation of β values
for the two dimensional RBDO problem.
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FIGURE 11. Results of the optimization. 2D RBDO problem.

volves random design variables as well as a purely aleatory vari-
able ẋ0 (initial velocity of the main system) with uniform distri-

6 Copyright c© 2014 by ASME



TABLE 1. Results of 2D RBDO problem.

Probabilistic Optimum

ε 0.20

α 14.95

Actual Pf 0.0090

Ẽ(ẼNESin f )
* 58.27 %

E(ẼNESin f )
† 58.13 %

* Approximated E and ENESin f
† Approximated ENESin f

bution ẋ0 ∼U(0.25,1).

max
µα ,µε

E(ENESin f (µα ,µε , ẋ0)) (15)

s.t. P((α,ε, ẋ0) ∈Ω)≤ 5∗10−2

1≤ µα ≤ 50
0.01≤ µε ≤ 0.2 (16)

(17)

As mentioned in Section 1.3, the probabilistic constraint is
better handled, at least for the present study, by using the time
metric instead of the energy metric. This can be better under-
stood by investigating the SVM for the energy (Figure 12) and
the time (Figure 13). Indeed, both share the same discontinuous
behaviors in the same regions of the space but a slightly differ-
ent SVM is obtained. This difference stems from the clustering,
which in the case of the energy, (Figure 14) is not as well sep-
arated as for the time metric (Figure 15). In other words, the
clustering for the energy does not solely isolate the discontinu-
ities.

Figure 16 depicts the approximation of β . Optimization
results are depicted in Figure 17 and listed in Table 2. The
probabilistic constraint is active and the actual probability of
failure calculated based on the SVM is 5.1%, slightly violating
the target probability.

FIGURE 12. Three dimensional boundary separating the two levels
of NES efficiency identified through clustering of ENESin f . Parameters:
α , ε , and initial velocity of the main system ẋ0.

FIGURE 13. Three dimensional boundary separating the two levels
of NES efficiency identified through clustering of t99. Parameters: α , ε ,
and initial velocity of the main system ẋ0.
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FIGURE 14. K-means clustered values of ENESin f with varied α , ε

and ẋ0. The clusters are not well separated, due to the nature of ENESin f .
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FIGURE 15. K-means clustered values of t99 with varied α , ε and ẋ0.
The clusters are more separated than those of ENESin f .

TABLE 2. Results of 3D RBDO problem.

Probabilistic Optimum

ε 0.1999

α 39.4968

Actual Pf 0.0510

Ẽ(ẼNESin f )
* 57.9206 %

E(ẼNESin f )
† 57.9391 %

* Approximated E and ENESin f
† Approximated ENESin f
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FIGURE 16. Training points and Kriging approximation of β for the
3 dimensional RBDO case.
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5 CONCLUSION
This paper introduces a new methodology for the optimiza-

tion under uncertainty of NES. The methodology stems from the
realization that the efficiency of a NES might be discontinuous
and highly sensitive to uncertainty. For this reason, specific tools
such as SVM and clustering are used to perform the optimization
and propagate uncertainty.

The next steps of this research will increase the dimensional-
ity of the problem and apply the proposed methodology to other
types of NES, including the important “ungrounded” configura-
tion.
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