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ABSTRACT
This paper presents an approach to estimate probabilities

of failure in the case of dependent random variables. The ap-
proach is based on copulas and support vector machines (SVMs).
A copula is used to generate dependent Monte Carlo samples
and an SVM is used to construct the explicit boundary of the
failure domain. It is shown that this construction of the failure
boundary cannot be made in the original space due to the lack
of “isotropy” of the probability densities. In this work the SVM
is built in the uncorrelated standard normal space and refined
using an adaptive sampling scheme. A transformation is used to
map SVM training points and Monte-Carlo samples between the
original space and the uncorrelated standard normal space. Be-
cause SVM is a classification-based approach, it can handle dis-
continuous responses and, more importantly, several limit states
using one single SVM. Several analytical examples are used to
demonstrate the methodology.

1 INTRODUCTION
In engineering and biomedical problems, input variables

are often statistically dependent. Depending on the strength
of the dependence, it can easily be shown that neglecting
the dependence can lead to erroneous and non conservative
reliability assessments. Although there are efficient techniques
to calculate probabilities of failure in specific cases (e.g., normal
distributions with inexpensive function evaluations), there is

a need for general approaches. Of paramount importance,
techniques are needed to estimate probabilities of failure in
the case of highly nonlinear limit-state functions and arbitrary
distributions while requiring a reasonable number of function
evaluations.

In the case of correlated variables, Nataf [1, 2] and Rosen-
blatt transformations [3] are well-known and commonly used
methods. These approaches map the dependent variable space
onto the uncorrelated standard normal space. While the Nataf
transformation only requires the marginal distributions, the
Rosenblatt transformation is based on the knowledge of the joint
probability density function, which is not always available. In
addition, the Rosenblatt transformation is not invariant with
respect to the order by which the variables are transformed.
As a consequence, approximation methods such as First Order
Reliability Method (FORM) would lead to different results for
different orderings. Although the Nataf transformation is attrac-
tive since it uses the marginals only, its limitations and accuracy
for non-normal distributions have now been recognized [4].

As an alternative to Nataf and Rosenblatt transformations,
copulas are a more recent and general approach to model the
dependence between variables. The basic idea behind copulas is
to create a joint cumulative density function (CDF) of a random
vector by “linking” (that is in fact the etymology of the word
copula) the marginal CDFs. The major advantage of copulas
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stems from their generality and that they are based on marginals.
In addition, copulas can be fitted to data to obtain a dependence
model and, if needed, generate dependent samples. There exist
several families of copulas (Gaussian, Student’s, Archimedean
copulas [5]) with the Gaussian and t-copulas being the most
widely used. The construction of Archimedean copulas is based
on various types of generator functions, which implies that
theoretically an Archimedean copula can be extended to any
dimensions. Construction and random sample generation of
an Archimedean copula are already implemented in package
‘nacopula’ in R [6]. A more in depth description of copulas is
provided in Section 3.1.

The ability to generate dependent samples solves only one
issue towards the calculation of probabilities of failure. In
the case of costly function evaluations, a crude Monte Carlo
sampling is not possible. One well-known approach to overcome
this difficulty is to approximate the responses using surrogates
(response surfaces or metamodels). Alternatively, as we propose
in this work, the contour of the failure domain can be estimated
explicitly using Support Vector Machines (SVMs) [7, 8, 9].
An SVM classifier has the ability to define highly nonlinear
contours representing the boundaries of non-convex and disjoint
failure domains. Because it is based on classification, SVM is
well suited for problems with multiple failure modes (e.g., for a
series system, the failure of one mode allows one to not evaluate
the other modes) and discontinuous responses. In addition,
an adaptive sampling scheme has been developed to construct
an accurate SVM boundary [10, 11], a crucial aspect for the
calculation of probabilities of failure.

It is shown in this article that, because of the “radial sym-
metry” of the distribution of probability densities in the original
space, the sampling scheme to obtain an accurate boundary
cannot be performed in the original space. For this reason, the
boundary of the failure domain is constructed in the uncorrelated
standard normal space which offers a radial symmetry of the
probability densities. This important and fundamental aspect is
developed in Section 4.1. The basic idea of the methodology
is therefore to adaptively construct an SVM-based boundary of
the failure domain in the uncorrelated standard normal space
while samples are generated in the original space using a
copula. The Monte-Carlo samples generated using the copula
are then mapped onto the standard normal space, allowing
one to calculate the probability of failure. A transformation is
needed to map the samples to and from the uncorrelated standard
normal space. For instance, in the adaptive sampling scheme
to construct the SVM in the standard space, the “class” (failure
or safe) of each adaptive sample must be determined. For this
purpose, the sample is mapped “back” to the original space
where a function evaluation (e.g., a finite element analysis)
can be performed. In this work, the Nataf transformation is

used as a transformation between the two spaces. Note that
the Nataf transformation is not used here as a probabilistic
transformation. Only in a few cases (e.g., normal distributions
with “linear” correlation), the Nataf transformation can be used
to obtain accurate probability estimates. Note that because the
joints distribution can be obtained directly from the copulas,
the Rosenblatt transformation could have been used to map the
samples to the uncorrelated standard normal space. However,
the Rosenblatt transformation is tedious to implement and not
easily scalable.

Another incentive for using the standard normal space is
that the Monte Carlo samples are located within a hypersphere.
As the number of dimensions increases, the volume of a
hypersphere becomes much smaller than the corresponding
hypercube. Therefore, by constraining the construction of the
SVM failure boundary within a hypersphere, the effects of the
so-called “curse of dimensionality” are mitigated.

The paper is organized as follows. Section 2 describes the
basic methodology. Section 3 3.1 introduces the concept of
copula. Section 3.2 provides background on SVMs. Section 4.2
described the SVM-based adaptive sampling scheme. Finally,
Section 5 provides several examples of analytical problems
with various probabilistic distributions. The example section
also describes an algorithm for generating dependent random
samples using a copula. In one of the examples, the probabilities
obtained using a copula are compared to the results when
Nataf transformation is used as a probabilistic transformation.
Finally, the Appendix 6 describes the fitting of copulas from data.

2 SUMMARY OF APPROACH
The basic methodology to calculate probabilities of failure

with dependent variables is presented in this section. There
are three basic ingredients: the construction of an explicit
boundary of the failure domain in the standard normal space,
the generation of Monte-Carlo samples in the (original) space
of dependent variables, and a transformation to map samples
between the original and the uncorrelated standard normal space.

The basic procedure for constructing the failure domain
boundary in the uncorrelated standard normal space and estimat-
ing the probability of failure is given by the following steps:

1. Generation of dependent samples in the original space.
2. Generation of an initial uniform design of experiments

(DOE) in the uncorrelated standard normal space.
3. Transformation of the DOE samples to the original space

for response evaluation and class (fail or safe) assignment.
In this work, we use the Nataf transformation to forward-
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and back map samples between the original space to the un-
correlated standard normal space. Note that the Nataf trans-
formation will not be used to generate the samples in the
original dependent space. This will be done by a copula.

4. Construction of an initial SVM approximation of the bound-
ary of the failure space in the uncorrelated standard space.

5. Calculation of initial probability of failure estimate based
on the SVM approximation, using all the Monte Carlo sam-
ples (generated by the copula) transformed from the original
space.

6. Refinement of the limit-state approximation using adaptive
sampling (see Section 4.2). Each additional sample is trans-
formed back to the original space to obtain the correspond-
ing responses. The probability of failure estimate is updated
after evaluation of each sample .

The authors reiterate that the Nataf transformation is not
used to generate the dependent samples. In other words, it is
not used as a probabilistic transformation but as one possible (ar-
bitrary) mapping. This point is essential as Nataf can be shown
to introduce large errors in the probability estimate if used as a
probabilistic transformation.

3 BACKGROUND
3.1 Copulas

Copulas are used to model the dependence of multiple
random variables [5]. The basic idea is to “link” the marginal
cumulative distributions FXi distributions instead of the variables
themselves. This aspect makes copulas one of the most general
and flexible tools to model dependencies as only individual
marginal distributions are needed. It has been used success-
fully in disciplines such as economics [12], biostatistics [13],
finance [14], hydrology [15], as well as engineering design [4].

Definition of a copula is given as:
Consider n variables with marginal cumulative distribution

functions of FX1 ,FX2 ...,FXn assumed continuous. From the Sklar
theorem [5], there exists a copula C, such that

H(x1,x2, ...,xn) =C(FX1(x1),FX2(x2), ...,FXn(xn)) (1)

where H is the joint cumulative distribution function of the vari-
ables. Therefore C : [0,1]n→ [0,1] is a joint cumulative function
with marginal cumulative distribution functions as input vari-
ables.

There are several types of copulas available. The commonly
used ones are Gaussian and Student’s t copulas which are also re-
ferred to as elliptical copulas due to the shape of iso-probability
contour. Another family of copulas are the Archimedean ones
[5], which can then be classified into one-parameter families and

two-parameter families. Some of the copula functions and their
parameters are listed in Tab. 1. Note that the elliptical copu-
las are the ones whose extension to multidimensional problems
(n > 2) is the simplest. In practice, Archimedean copulas can be
constructed in higher dimensions using a “nested” approach [6].

Once a copula has been constructed, Monte-Carlo samples
can be generated following various approaches [12, 16]. In ad-
dition, for real world applications, the copula can be determined
by fitting it to actual data. Comparison between various types of
copula to a certain dataset can be found in [17]. A basic descrp-
tion of the fitting process is provided in Section 6.

3.2 Support Vector Machines (SVMs)
SVM [7, 8] is a machine learning technique widely used for

classification. In reliability assessment, the use of SVM to ap-
proximate highly nonlinear limit-state functions has been shown
in several papers by the authors [18, 9, 10, 11]. The two most
important features of SVMs are their ability to handle multiple
failure modes using a single classifier and to be insensitive to
discontinuities.

An SVM defines an explicit boundary that separates sam-
ples belonging to two classes labeled as +1 and −1. Given a
set of N training samples ui in an n-dimensional space and the
corresponding class labels, an SVM boundary is given as:

s(u) = b+
N

∑
i=1

λiyiK(ui,u) = 0 (2)

where b is a scalar referred to as the bias, λi are Lagrange mul-
tipliers obtained from the quadratic programming optimization
problem used to construct the SVM, and K is a kernel function.
The classification of any arbitrary point u is given by the sign of
s(u). The training samples for which the Lagrange multipliers
are non-zero are referred to as the support vectors. The kernel
function K in Eqn. (2) can have several forms, such as polyno-
mial or Gaussian radial basis kernel. The Gaussian kernel (Eqn.
(3)) is used in this article.

K(ui,u j) = exp

(
−
∣∣∣∣ui−u j

∣∣∣∣2
2σ2

)
(3)

where σ is the width parameter.

4 BASIC METHODOLOGY
4.1 Why not construct the limit state in the original

space?
Using copulas, observations of dependent variables

(X1,X2, ...Xn) can be generated in the original space. Therefore,
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TABLE 1: TYPES OF COPULA FUNCTIONS

Type C(v1,v2, . . . ,vn) Parameter domain

Gaussian ΦR(Φ
−1(v1),Φ

−1(v2), . . . ,Φ
−1(vn))

* Ri j ∈ [−1,1]

Student tR,ν(t−1
ν (v1), t−1

ν (v2), . . . , t−1
ν (vn))

† Ri j ∈ [−1,1],ν ∈ (0,∞)

Clayton [max(v−θ

1 + v−θ

2 −1,0)]−1/θ θ ∈ (0,∞)

Gumbel-Hougaard exp
(
−
[
(− lnv1)

θ +(− lnv2)
θ
]1/θ

)
θ ∈ [1,∞)

Frank −(1/θ) ln
(
1+(e−θv1 −1)(e−θv2 −1)/(e−θ −1)

)
θ ∈ (∞,∞)\{0}

FGM‡ v1v2 +θv1v2(1− v1)(1− v2) θ ∈ [−1,1]
* ΦR is the standard multivariate normal distribution with correlation matrix R.
† tR,ν is the standard multivariate Student’s t distribution with correlation matrix R and ν degrees of

freedom.
‡ Short for Farlie-Gumbel-Morgenstern.

it might seem natural and intuitive to build the boundary of
the failure domain in the original dependent space and use the
Monte-Carlo samples to calculate the probability of failure.
However, the original space might exhibit a pronounced non-
uniformity of Monte-Carlo sample densities. Therefore, any
adaptive sampling scheme to construct the SVM boundary (see
Section 4.2 ) would need to locate samples in the vicinity of
high density regions. To avoid this “lack of radial symmetry”
of the densities, this article proposes to construct the SVM in
the standard normal space which presents an isotropy (more
precisely, a radial symmetry) of the densities around the means.

The latter point is more effectively demonstrated graphi-
cally. Fig. 1 and 2 depicts an example of the transformation
of the iso-density contour in the original space and the standard
space. In the standard space, consider 8 lines with 15 points
uniformly distributed on each. The blue circle represents an
iso-density contour. Using a Gumbel bivariate copula with ex-
ponential distributions (θ = 1), the contour and the points are
transformed back to the original space (Fig. 2). The 8 lines be-
come 8 curves and points on each line are clearly not uniform
any longer. In fact, inspection shows that the density of points is
much larger close to the origin. Therefore, an adaptive sampling
scheme, would require more samples around the origin.

Another important motivation to perform the construction
in the standard space, is that the adaptive sampling can be per-
formed within a hypersphere since the distributions are normal.
Because the volume of a hypersphere is far less than the volume
of the corresponding hypercube, this is beneficial to mitigate the
“curse of dimensionality” in higher dimensions. The following
section provides the detail of the adaptive sampling scheme con-
strained within a hypersphere.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

 

 

FIGURE 1: 8 LINES IN THE STANDARD SPACE WITH UNI-
FORMLY SPACED SAMPLES ON EACH.

4.2 Adaptive sampling and Explicit Design Space De-
composition (EDSD)

We wish to construct the explicit boundary of the failure
space in the standard space using an SVM. For this purpose,
the explicit design space decomposition (EDSD) approach will
be used [11, 19] . First, an initial uniform DOE such as Central
Voronoi Tesselation (CVT) is used. Each sample is then mapped
back to the original space and evaluated in order to obtain
its class (fail or safe) to build the first SVM boundary. Then
the boundary is refined using an adaptive sampling scheme as
described below. As explained in Section 5, a novelty of this
work is that all static DOEs and adaptive samples are selected
within a hypersphere of radius r centering at the origin.

The first type of sample (referred to as primary sample) of
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FIGURE 2: TRANSFORMATION OF 8 LINES BACK TO THE
ORIGINAL SPACE. THE DENSITIES OF SAMPLES ARE NO
LONGER UNIFORM AND ARE LARGER IN THE VICINITY
OF THE ORIGIN.

the EDSD adaptive sampling scheme is found by searching a
point in the standard space that is located as far as possible from
existing samples and also has a high probability of misclassifi-
cation. In addition, the sample should be within a hypersphere.
Formally, this sample is found by solving the following optimiza-
tion problem:

max
u

||u−unearest ||

s.t. s(u) = 0
||u|| ≤ r (4)

The radius of the hypersphere r is chosen as the maximum
distance from the center to all the samples in the uncorrelated
standard normal space. These samples are obtained by trans-
forming all the samples generated in the original space to the
standard space using the Nataf transformation.

To quantify the advantage of performing EDSD in a hyper-
sphere, let us calculate the volume of the hypersphere. The vol-
ume of a n-dimensional hypersphere [20] with radius r is ex-
pressed as:

Vn sphere(r) =
πn/2

Γ(n/2+1)
rn (5)

where Γ is the Gamma function. Thus, the volume of a n-

dimensional hypersphere with radius r can be rewritten as:

Vn sphere(r) =

{
2(n+1)/2π(n−1)/2

n!! rn n is odd
πn/2

(n/2)! rn n is even
(6)

where n!! is the double factorial of n. Thus, for a n-dimensional
hypersphere inscribed in a hypercube, the ratio of the two vol-
umes is:

ρ(n) =

{
π(n−1)/2

2(n−1)/2n!!
n is odd

πn/2

2n(n/2)! n is even
(7)

The ratio shows that as n increases, the volume of the hyper-
sphere becomes much smaller than the corresponding hypercube.

A secondary sample is selected in a region in the vicin-
ity of SVM boundary that has the highest local unbalance of
data from the two classes. Unbalance of data is quantified as
|d−(u)−d+(u)|, where d−(u) and d+(u) are the distances to the
closest −1 and +1 samples. A high unbalance of data may be an
indicator of a phenomenon known as “locking” of SVM, which
may result in a slow rate of convergence of SVM to the actual
limit-state function. Although change in SVM due to primary
samples may be negligible in such cases, secondary samples are
useful in removing locking. This is shown conceptually in Fig.
3. Selection of a secondary sample is a two step process:

1. Selection of a point uc on the SVM boundary s(u) = 0 with
highest measure of unbalance.

max
uc

(d−(uc)−d+(uc))
2

s.t. s(uc) = 0
||uc|| ≤ r (8)

2. Selection of secondary sample within a hypersphere cen-
tered at uc.

min
u

sign(d−(uc)−d+(uc))s(u)

s.t. ||u−uc||−
1
4
|d−(uc)−d+(uc)| ≤ 0

||u|| ≤ r (9)

In this work, the EDSD process adds two primary samples
and one secondary sample at each iteration. More details about
SVM “locking” can be found in [11].
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FIGURE 3: LOCKING OF SVM WITH LOCALLY UNBALANCED DATA IN THE VICINITY OF SVM (LEFT), SELEC-
TION OF A SECONDARY SAMPLE (MID), AND UPDATE OF SVM DUE TO THE EVALUATED SECONDARY SAMPLE
(RIGHT).(REVISED FROM [11]. )

5 EXAMPLES AND RESULTS
Several analytical examples are used to demonstrate the

methodology. The examples chosen have known joint distribu-
tions from which the marginals can be derived. These marginals
are then “linked” using a specific copula. Note that in engineer-
ing applications, the joint distribution is typically not known and
the examples are only used to demonstrate the methodology. In
addition, the proposed analytical examples allow one to obtain
the actual probability of failure which would otherwise vary for
different copulas used to generate the dependent Monte-Carlo
Samples. The first example is tailored to demonstrate the errors
that can be made if Nataf is used traditionally as a probabilistic
transformation.

For the two-dimensional problems, the dependent samples
are generated based on a copula C (exact for our problems). The
conditional distribution function of V2 knowing V1 = v1 (denoted
as cv1(v2)) can be found as:

cv1(v2) = P[V2 ≤ v2|V1 = v1]

= lim
∆v1→0

C(v1 +∆v1,v2)−C(v1,v2)

∆v1

=
∂C(v1,v2)

∂v1
(10)

The algorithm for generating dependent samples for a given
joint distribution function can be summarized as follows:

1. Generate two independent uniform (0,1) variates v1 and t;

2. Set v2 = c−1
v1
(t);

3. Transform using inverse marginal distribution function.
x1 = F−1

X1
(v1) and x2 = F−1

X2
(v2)

4. The desired samples are (x1,x2).

In each example, the initial DOE is generated in the stan-
dard normal space for the construction of the first approximated
failure boundary. The DOE samples are selected to be uniformly
spaced (using a max-min distance algorithm). As described in
the methodology section, the adaptive sampling in the standard
space is constrained within a hypersphere centered at the origin
with a radius defined as the distance to the farthest Monte-Carlo
sample.

The convergence plots of the estimated probability of fail-
ure are given for each problem along with a comparison to the
reference probability which is calculated using the actual limit
state function in the original space. For all the test examples, the
Monte-Carlo simulations are performed using 106 samples. For
the sake of completeness, the efficiency of the adaptive sampling
scheme is compared to the results obtained with a Centroidal
Voronoi Tessellations (CVT) [21, 22] DOEs of various size.

5.1 Example 1
Consider the Gumbel’s bivariate joint distribution function

with parameter set to unity [23, 24]:
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FIGURE 4: MONTE-CARLO SAMPLES IN THE ORIGINAL
SPACE USING THE COPULA. FAILURE DOMAIN (RED).

FX(x1,x2) =

{
e(−x1−x2−x1x2)− e−x1 − e−x2 +1, x1,x2 ≥ 0
0 otherwise

From which, the marginal distributions for x1 and x2 which
follow standard exponential distributions are:

FX1(x1) = 1− e−x1

FX2(x2) = 1− e−x2 (11)

For this problem, the copula (i.e., the expression that links
the two marginals to the joint distribution FX) can be derived:

C(v1,v2) = (1− v2)(1− v1)
1−log(1−v2)+ v1 + v2−1 (12)

where v1,v2 ∈ [0,1]2 are the values of the marginals.
In this problem, the failure domain is defined by one limit-

state function is g(x) = 4− x1x2. A similar example with linear
limit-state function was introduced by Hohenbichler and Rack-
witz [25], and was discussed by Ditlevsen [26], Madsen [27], and
Yoojeong [4] et al.

Fig. 4 depicts the Monte Carlo samples in the original space
which are generated from the joint distribution as explained in
Section 3.1 and 5. And the algorithm is given at the beginning of
this section. The figure also shows the failure region.

Contours of this set of limit-state functions in the physical
space and the standard space are depicted in Fig. 5 and 6, re-
spectively.
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FIGURE 5: LIMIT-STATE
FUNCTION IN THE ORIG-
INAL SPACE FOR EXAM-
PLE 1
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FIGURE 6: LIMIT-STATE
FUNCTION IN THE STAN-
DARD NORMAL SPACE
FOR EXAMPLE 1
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SVM boundary
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Contour of LSF=0

Hypersphere constraint

FIGURE 7: SVM APPROXIMATING THE BOUNDARY OF
THE FAILURE REGION FOR EXAMPLE 1.

5.1.1 Dependent samples generated using the
copula The final SVM boundary (blue) and the actual con-
tour of limit-state function g(u) = 0 (black) are depicted in Fig.
7 as well as the constraining circle. Failure probabilities are cal-
culated after adding each adaptive sample and relative errors of
these probabilities are shown in Fig. 8. The relative error of the
probability of failure is under 5% when the number of samples
reaches 38. After adding 54 adaptive samples, it is observed that
the probability of failure has an error less than 3% compared to
the reference failure probability.

The accuracy of the probability of failure is also compared
to the construction of the SVM using a CVT DOE only. For
this two dimensional problem, the size of the DOE is increased
by increments of 5 samples. The results are gathered in Fig. 9.
From the results, it appears that the proposed scheme is more
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FIGURE 8: RELATIVE ERROR OF PROBABILITY OF FAIL-
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FIGURE 9: COMPARISON OF Pf CALCULATION USING
ADAPTIVE SAMPLING SCHEME AND CVT DOE FOR EX-
AMPLE 1.

accurate and robust than the DOE approach.

5.1.2 Testing Nataf as a probabilistic transfor-
mation. In order to show the relevance of using copulas, the

FIGURE 10: SAMPLES GENERATED USING COPULA
(RED) METHOD AND INVERSE NATAF TRANSFORMA-
TION (BLUE) AND THE CONTOURS OF LIMIT-STATE
FUNCTIONS.

results are compared to the probability estimates if one uses the
Nataf transformation as a probability transformation. Practically
this means that the actual dependent Monte-Carlo samples are
not mapped to the uncorrelated standard normal space but the
probability is now calculated using a multivariate uncorrelated
standard normal distribution.

In order to compare the copula and the Nataf approaches,
several levels of probabilities will be studied. To do so, the limit-
state function is parameterized: g(x) = a− x1x2, where a varies
from 0 to 4. Contours of this set of limit-state functions are de-
picted in Fig. 10. The contour of the limit-state function moves
away from the origin as a increases. The corresponding prob-
ability of failure should decrease. The red samples in Fig. 10
are generated from the copula while the blue samples are gener-
ated by uncorrelated sampling in the standard normal space and
transformed back to the physical space using inverse Nataf trans-
formation. For each a in the limit-state function, probabilities
of failure can be calculated using both sets of samples. Differ-
ence between the probabilities are studied in Fig. 11. In this
case, the copula sampling method uses the information of the
joint distribution function while Nataf transformation only uses
the (linear) correlation coefficient of variables x1,x2. The copula-
based probability being exact, the plot clearly demonstrates that
the Nataf probabilistic transformation will lead to large errors as
the probability for small probabilities. The plot also depicts the
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FIGURE 11: RATIO OF PROBABILITIES OF FAILURE
CALCULATED USING INVERSE NATAF TRANSFORMA-
TION AND COPULA W.R.T INCREASING A IN LSF. THE
DASHED LINES CORRESPOND TO THE 95 % CONFI-
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95% confidence interval.

5.2 Example 2
The parametric bivariate logistic distribution [5] promoted

by Ali [28] has the joint distribution function Hθ as

Fx,θ (x1,x2) = (1+ e−x1 + e−x2 +(1−θ)e−x1−x2)−1 (13)

where x1,x2 ∈ [−∞,∞] and θ ∈ [−1,1]. The marginal distribu-
tions are standard logistic distribution as shown in Equation 14.

FX1(x1) = (1+ exp(−x1))
−1

FX2(x2) = (1+ exp(−x2))
−1 (14)

When θ = 1, the joint distribution function becomes Gumbel’s
bivariate logistic distribution whose joint distribution function is

Fx(x1,x2) = (1+ e−x1 + e−x2)−1 (15)

and when θ = 0, the input variables X and Y are independent.

The copula of X1 and X2 can be found as

Cθ (v1,v2) =
v1v2

1−θ(1− v1)(1− v2)
(16)

All the Monte Carlo samples in the physical space which are
generated using the copula in Equation 16 are shown in Fig. 12.
Histogram plots for x1 and x2 are also given.

 

FIGURE 12: SAMPLING IN THE ORIGINAL PHYSICAL
SPACE USING SKLAR COPULA.

The contour of limit-state function g(x) = 0 in the original
physical space is depicted as the red curves in Fig. 12. And af-
ter applying the nonlinear transformation of all the Monte Carlo
samples to the standard space, the contour of limit-state function
g(u) = 0 is shown in Fig. 13.

For the sake of evaluating the efficiency of adaptive sam-
pling scheme, the same tests with CVT DOE are carried out.
Probabilities of failure are calculated for each DOE. The results
of the probabilities are shown in Fig. 16.

6 CONCLUSION
Using copulas and SVMs, this work introduces an approach

to evaluate probabilities of failure when the random variables are
dependent. The technique is based on the explicit construction
of the limit-state function in the uncorrelated standard normal
space. The Monte Carlo samples are generated in the original
dependent space directly with the help of copula and then
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TABLE 2: RESULTS OF EXAMPLES.

Results Example 1 Example 2

PRe f
f

*(×10−2) 0.608 1.209

Size of initial DOE 10 30

No. of samples when εSV M < 5% 38 59

No. of samples when εSV M < 3% 64 93

95% CI of PRe f
f (×10−2) [0.593, 0.624] [1.140,1.278]

* PRe f
f is calculated using the analytical limit-state function.

u1

u
2
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FIGURE 13: LIMIT-STATE FUNCTION IN THE STANDARD
SPACE FOR EXAMPLE 2.

transformed to the uncorrelated standard normal space. The
construction of an accurate limit-state function is based on SVM
explicit design space decomposition with adaptive sampling
scheme. One of the key conclusions of this work is that the
standard normal space offers radial symmetry but also enables
one to mitigate the effect of the curse of dimensionality by
sampling within a hypersphere.

The next steps of this research will test this methodology
for higher dimensional problems. In addition, we will test this
methodology on cases where the copula is constructed from data.
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FIGURE 14: SVM BOUNDARY BETWEEN SAFE AND
FAILED SAMPLES IN THE STANDARD SPACE.
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Appendix A: Fitting copula to existing data

In engineering applications, there is often a limited amount
of data available thus making it difficult to obtain joint distri-
bution information with traditional approaches. Copulas can be
used for this purpose to extract dependence information and a
joint distribution. Therefore, it is important to determine an ap-
propriate copula to use. Genest and Rivest [29] have developed
a non-parametric way to identify the copula in the Archimedean
family based on the empirical copula [30]. The alternative para-
metric method is based on the maximum likelihood estimator.

Consider θ is the vector of parameters needed to be found
for a copula with m observations. The likelihood of the joint
distribution function is:

L (θ |x(1), . . . ,x(m)) =
m

∏
i=1

Łi(θ |x(i)) (17)

where Łi(θ |x(i)) is the likelihood for the ith observation,

Łi(θ |x(i)) = c(F(i)
X1

(x1),F
(i)
X2

(x2), ...,F
(i)
Xn

(xn)|θ)
n

∏
j=1

f (i)X j
(x j)

(18)
In practice it is more convenient to use the log-likelihood

function:

lnL (θ |x(1), ...,x(m)) =
m

∑
i=1

lnŁi(θ |x(i))

=
m

∑
i=1

lnc(F(i)
X1

(x1),F
(i)
X2

(x2), ...,F
(i)
Xn

(xn)|θ)+

m

∑
i=1

n

∑
j=1

ln f (i)X j
(x j) (19)

Normally, the estimation of the parameters of copulas requires
numerical optimization process to maximize the log-likelihood
function. Based on the idea of using of maximum likelihood
in identifying the appropriate copula for given data, Joe and et
al [31] introduced a method called Inference Functions for Mar-
gins (IFM) to reduce computational cost and Noh and et al [32]
proposed to use Bayesian method to identify a copula that fits the
data best.

Once the model of the copula is constructed, the proposed
procedures in this article can be applied to assess the reliability
using Monte Carlo simulation.
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