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Abstract This article presents a study of three validation
metrics used for the selection of optimal parameters of a
support vector machine (SVM) classifier in the case of non-
separable and unbalanced datasets. This situation is often
encountered when the data is obtained experimentally or
clinically. The three metrics selected in this work are the
area under the ROC curve (AUC), accuracy, and balanced
accuracy. These validation metrics are tested using com-
putational data only, which enables the creation of fully
separable sets of data. This way, non-separable datasets,
representative of a real-world problem, can be created by
projection onto a lower dimensional sub-space. The knowl-
edge of the separable dataset, unknown in real-world prob-
lems, provides a reference to compare the three validation
metrics using a quantity referred to as the “weighted like-
lihood”. As an application example, the study investigates
a classification model for hip fracture prediction. The data
is obtained from a parameterized finite element model of a
femur. The performance of the various validation metrics is
studied for several levels of separability, ratios of unbalance,
and training set sizes.
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1 Introduction

In many areas of science and engineering, models are used
to predict the responses of a system, the outcome of a phys-
ical process, or evaluate a risk. A model can be purely
computational such as finite element or computational fluid
dynamics simulations. It can also be solely constructed from
experimental or clinical data. Regardless of how the model
is built, the most important characteristic is its predictive
ability. In other words, how is the model going to rep-
resent reality beyond the data that was used to construct
it?

There exist several validation metrics to quantify the pre-
dictive ability of a model. Examples of metrics are the
accuracy, balanced accuracy (Brodersen et al. 2010), Area
Under the Receiver Operating Characteristic (ROC) curve
(AUC) (Metz 1978; Fawcett 2006), Matthews correlation
coefficient (Matthews 1975) and F-score (Rijsbergen 1979).
These metrics are used to select the best parameters of a
model through cross-validation (Kohavi 1995). Beyond the
choice of optimal parameters, these metrics can also be
used on a validation dataset that has not been involved in
the training of the model. Although some of these metrics
have gained wide acceptance, care must be taken in some
situations. For instance, in the case of a binary classifica-
tion problem (e.g., failure or safe), two types of difficulties
can occur, especially if the model is constructed using
physical experiments or clinical data. The first one is the
non-separability of the data. This phenomenon suggests the
existence of factors that are not accounted for as well as
measurement errors (these two aspects are often simply
viewed as “randomness”). The second problem stems from
the fact that the data might be unbalanced. For instance, in
the reliability or biomedical fields, there is often a much
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smaller number of failure or unhealthy cases than safe or
healthy cases.

The objective of this article is to test the performance
of three well-known validation metrics for a classification
problem where both issues of non-separability and unbal-
anced datasets occur. The three metrics are: AUC, basic
accuracy, and balanced accuracy. These metrics are used to
find the optimal parameters of a support vector machine
(SVM) classifier.

In this work, computational data was used instead of
experiments in order to have more control on the features
of the datasets. In order to create non-separable cases, a
set of separable data was created and then projected onto
a sub-space thus leading to non-separable data. In addition,
this approach provides an exact reference metric, referred to
as “weighted likelihood”, to compare the various validation
metrics.

As part of an ongoing effort on the prediction of hip frac-
ture, the test cases presented in this work are based on a
finite element model of a femur. Given a failure criterion
and a set of parameters (e.g., femoral head geometry), an
SVM separating failed and safe samples is constructed. Sev-
eral scenarios of non-separable and unbalanced datasets are
studied.

The paper is organized as follows: A review of SVM
for balanced and unbalanced data is presented in the back-
ground Section 2. The section also introduces the three
validation metrics used in this paper: accuracy, balanced
accuracy, and AUC. Section 3 presents the details of the
parameter selection strategy in case of non-separable and
unbalanced data. It also provides the derivation for a
likelihood-based reference metric. Finally, Section 4 pro-
vides the results and conclusions based on various datasets
with different levels of unbalance, non-separability, as well
as sizes of training samples.

2 Background
2.1 SVM classification

In this paper, we are concerned with the predictive
capability of a classification model. The classifier chosen
in this work is referred to as an SVM (Cristianini and
Shawe-Taylor 2000; Burges 1998). SVM is now a widely
accepted machine learning technique that has been used in
many applications (Basudhar et al. 2008; Yang 2010; Tay
and Cao 2001; Basudhar and Missoum 2010; Konig et al.
2005).

An SVM is used to construct an explicit boundary
that separates samples belonging to two classes labeled as
+1 and —1. Given a set of N training samples X; in a
d-dimensional space, and the corresponding class labels,
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a linear SVM separation function is found through the
solution of the following quadratic programming problem:

min Hiwi2+c Xl &

st yiw-x;—b)>1-4
&>0,i=1,...,N (1)

where b is a scalar referred to as the bias, y; are the classes,
C is the cost coefficient, and &; are slack variables which
measure the degree of misclassification of each sample x;
in the case the data is non separable. SVM can be general-
ized to the nonlinear case by writing the dual problem and
replacing the inner product by a kernel:

N
. 1
min Zki)»jyiyjK(Xi, Xj) — ;li
i,j i=

N
s.t. Z)\,‘yizo
i=1
o<x<C,i=1,...,N 2)

where A; are Lagrange multipliers. The training samples for
which the Lagrange multipliers are non-zero are referred to
as the support vectors. The number of support vectors is
usually much smaller than N, and therefore, only a small
fraction of the samples affect the SVM equation.

The corresponding SVM boundary is given as:

N
s)=b+ Y AyiKxi,x)=0 3)
i=1
The classification of any arbitrary point x; is given by the
sign of s(x;). The kernel function K in (3) can have several
forms, such as polynomial or Gaussian radial basis kernel,
which is used in this article:

K (xi.%) = exp (= [Ix; =xII?). y > 0 *)

where y is the width parameter of the Gaussian kernel.

For some classification problems, especially when han-
dling data collected for biomedical studies, the data is
usually unbalanced. In other words, a class might be far
more populated than the other one. It order to balance the
data, Osuna and Vapnik (Osuna et al. 1997; Vapnik 1999)
proposed using different cost coefficients (i.e., weights) for
the different classes in the SVM formulation. The corre-
sponding linear formulation is:

. + _ N
min Nwit+ ety s+ YN g
st yiw-x; —b)>1-§;
& >0,i=1,...,N 5

where C* and C~ are cost coefficients for 4+1 and —1
class respectively. Nt and N~ are number of samples from
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+1 and —1 classes. The coefficients are typically chosen as
(Chang and Lin 2011):

Ct=Cxw'
CT=Cxw” (6)

where C is the common cost coefficient for both classes,
wh and w™ are the weights for +1 and —1 class respec-
tively. The weights are typically chosen as wt = 1 and
w~ = N1 /N~. This article uses the weighted formulation
of SVM for all the results.

2.2 k-Fold cross validation

Cross validation is a commonly used technique to find the
parameters of a model such as the cost coefficient and the
width parameter for an SVM. In k-fold cross-validation,
samples from both safe and failed classes in the training
set are randomly divided into k subsets of equal size. Of
all the k subsets, a single subset is used as validation sam-
ples for evaluating the model while the remaining £ — 1
subsets are used as training samples. The cross-validation
process is then repeated k times, with each of the k& sub-
sets used exactly once. The k results from the “folds”
are averaged to produce a single estimation of model per-
formance. In this article, 10-fold cross-validation is used
(McLachlan et al. 2004; Kohavi 1995). Three validation
metrics are presented below: accuracy, AUC, and balanced
accuracy.

2.3 Commonly used validation metrics
2.3.1 Accuracy and balanced accuracy

For convenience, we introduce the following abbrevia-
tions: N (number of “positive” samples), N~ (number of
“negative” samples), TP (number of true positives or
correctly classified positive samples), TN (number of true
negatives or correctly classified negative samples), F P
(number of false positives or misclassified negative sam-
ples), FN (number of false negatives or misclassified
positive samples).

Accuracy is an intuitive and widely used criterion for
evaluating a classifier. It works well if the number ofsam-
ples in different classes are balanced. The criterion can be
expressed as:

A TP+TN 7
ccuracy = Nt 4 N- (7)

Leave-one-out error is a validation metric based on accu-
racy. Some upper bounds of the leave-one-out error can
be derived. These bounds include Jaakkola-Haussler bound
(Jaakkola et al. 1999), radius-margin bound (Vapnik 1998),
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Fig.1 An example of ROC curve and corresponding AUC

Opper-Winther bound (Opper and Winther 2000) as well as
span bound (Vapnik and Chapelle 2000).

When the two classes are highly unbalanced, the perfor-
mance of this measure may lead to acute “over-fitting” (see
results in Section 4). In the case the data is not balanced, the
balanced accuracy can be used (Brodersen et al. 2010):

1
Balanced Accuracy = (

2

TP TN
) @®)

NT + N™
2.3.2 Area under ROC curve (AUC)

The ROC curve (Metz 1978) is a graphical representation
of the relation between true and false positive predictions
for all the possible decision thresholds. In the case of SVM
classification, thresholds are defined by the SVM value.
More specifically, for each threshold a True Positive Rate
(TPR = TP/(TP 4+ FN)) and a False Positive Rate
(FPR = FP/(FP + TN)) are calculated. Graphed as
coordinate pairs, these measures form the ROC curve. An
example ROC curve is depicted in Fig. 1. Once the ROC
curve constructed, the “area under the curve” (AUC) is used
as a validation metric. A perfect AUC will be equal to one.
It can be interpreted as the “probability that a classifier
will rank a randomly selected positive sample higher than
a randomly chosen negative one” (Fawcett 2006). An AUC
value of 0.5 indicates no discriminative ability between
samples from different classes, which would be equivalent
to flipping a coin to make a decision.

2.4 Parameter selection strategy for SVM

The optimal parameters C and y of the SVM Gaussian
kernel are the maximizers of the cross-validation metrics
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Fig. 2 Manufactured non-
separable samples obtained by
projection of a separable dataset
in a higher dimensional space
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described in the previous section. A typical approach con-
sists of constructing a grid and choosing the maximizer out
of the discrete set of points. Another approach is to use a
global optimization method such as a Genetic Algorithm
(Goldberg and Holland 1988) or DIRECT (Bjorkman and
Holmstrom 1999). Typical ranges of parameters, as chosen
in this work, are: C € [2710,217) and y € [27%,210].
Within these ranges, the SVM can be a hard or soft classi-
fier and the decision boundary can go from a hyperplane to
a highly non-linear hypersurface.

2.5 Confidence interval estimation

In order to obtain a confidence interval for the various
validation metrics, bootstrapping can be used (Efron and
Tibshirani 1997; Varian 2005). For a dataset of size n,
bootstrapping works by uniformly selecting, with replace-
ment, n data points from the pool. The validation metric
can be recalculated from these bootstrap samples. This
process is repeated for a large number of times to form
a distribution of wvalidation metric values. From this
distribution, 95% or 99% confidence intervals can be
empirically estimated.

3 Methodology
3.1 Manufactured non-separable cases

In many engineering or biomedical problems, the data is
not separable. This stems from the fact that the data is usu-
ally studied in a finite dimensional space which does not
account for all the factors that might influence an outcome.
For instance, when studying hip fracture data from a cohort
of patients, the results are typically reported in a space made
of parameters such as age, weight, bone mineral density, etc.
Even in the case when this space is high dimensional, the
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data might still not be separable as the number of dimen-
sions used might still be a fraction of the actual number of
factors involved in the occurrence of hip fracture. In other
words, non-separable data can be seen as the projection of
otherwise separable data onto a space of lower dimension-
ality. Figure 2 depicts an example in a three dimensional
space where the data is separable (separation represented
by a plane) and the corresponding projection on a two
dimensional space where the data is no longer separable.

Based on these observations, this article proposes to
manufacture non-separable cases by projecting the data
from a separable space onto its sub-space. The manufac-
tured dataset will exhibit the same type of non-separability
encountered in experimental or clinical database. Using this
approach, the normally unknown separable case is avail-
able and enables the derivation of a “reference” quantity to
compare the various validation metrics.

In general, another origin of non-separability also stems
from errors in measurements whereby the values of the
parameters are not known exactly. By itself, this will con-
tribute to non-separability. Without any loss of generality
and for the sake of clarity, this difference will be considered
immaterial. Alternatively, the reader can assume that there
is no uncertainty on the measured data.

3.1.1 Weighted likelihood

This section introduces a metric which enables the compari-
son between classifiers constructed with non-separable data.
This comparison is made possible by using information
from the, usually unknown, model constructed from sepa-
rable data. The proposed metric is based on the following
idea: the non-separable case will produce misclassification.
Because of the availability of the classifier with separable
data (an approximation of the Bayes classifier (Murty and
Devi 2011), it is then possible to find the probability P;
that a misclassified sample x; belongs to its predicted class.
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Gathering and averaging this information for all the mis-
classified samples, one can form a “weighted likelihood”
defined as:

N .
] misc
L, = > wilog(Pr) )
Npise =1
P — P(—1]x;) ifs(x;) <Oands(x;)y; <0
T P(H1xy)  ifs(x;) > Oand s(x;)y; <0’
1 if y; =+1
w; = .
' xf ify; = —1

where N,igc is the number of misclassified samples by the
SVM constructed in the sub-space, y; is the actual class of
sample x; and wj; is the weight of for sample x;. The weights
are used for the case where the data is unbalanced.

The probability P; can be efficiently obtained using
Monte-Carlo simulations using the SVM from the separable
case. Figure 3 provides an example of the methodology in a
three dimensional space. For every data point, Monte-Carlo
samples are generated along the dimension that is removed
to generate a non-separable dataset. In the case of an SVM
where the space is split into positive and negative regions,
the probability of belonging to the +1 class for any sample
X; can be calculated as:

MC+
P(+1]x;) = i=1,..

LN (10

Al]MC ’
where x; is the i™ sample in the sub-space, N¥€ is the
number of Monte Carlo samples, and NiM c+ represents the
number of Monte Carlo samples that are predicted as posi-
tive by the SVM constructed with the separable dataset. The
corresponding probability of belonging to the -1 class can
be calculated as:

P(—1x)=1—PH1x),i=1,....,N (11)

That is, £, is a measure of how correct is the classifier
in the sub-space compared to the one with separable sam-
ples. The larger algebraic value of the weighted likelihood,

the better is the SVM in comparison to the actual separable
SVM.

It is also possible to obtain a reference value of the
weighted likelihood. This is done by increasing the num-
ber of samples until the weighted likelihood converges. The
converged value of the likelihood is then considered as the
reference value.

4 Results

This section provides results for various SVM classifiers
trained and tested using different validation metrics on
various dataset configurations. As described in the method-
ology section, non-separable datasets are generated by
projection of a separable case in higher dimension. Sam-
ple sets used in this section have different sizes, levels of
separability as well as levels of unbalance. The scores
for the three validation metrics and the weighted likeli-
hood £, are provided. The SVM model is constructed
using a training set which will be used for cross-
validation. All the validation metrics are evaluated on a
different test set that was not used in the training pro-
cess. Each result is provided with a corresponding 95%
confidence interval.
The following notations are used in this section:

Ly, weighted likelihood.

Ref. £, reference value of weighted likelihood (see
Section 3).

AUC: area under ROC curve.

Acc: accuracy.

Bacc: balanced accuracy.

As a test case, we consider the problem of hip fracture
prediction. SVM is used as a classifier between fractured
and healthy individuals. The data is obtained from a fully
parameterized finite element model as described in the
following section.
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Table 1 Parameters implemented in the finite element model of a
femur

Region Name Parameter
Geometric Parameters

Neck Outer diameter d neck
Thickness of the cortical bone t neck

Intertrochanter Outer width w trochanter
Thickness of the cortical bone t trochanter

Shaft Outer diameter d shaft
Thickness of the cortical bone t shaft
Neck-shaft angle alpha
Other Parameters
Weight weight
Young’s modulus Ecortical
Poisson ratio v

4.1 Fully parameterized finite element model of a femur

A fully parameterized finite element model of a femur is
constructed in ANSYS using ANSYS Parametric Design
Language (APDL) (ANSYS 2011). The model parameters
are listed in Table 1 and depicted in Fig. 4a. In addition,
Fig. 4b depicts an example of contour of principal strain.

4.2 Sample generation and failure criterion

The data used in the experiments are obtained by sam-
pling three variables: the Young’s modulus of the cortical

Fig. 4 Fully parameterized
finite element model of a femur:
a Parameters. b Contour of
principal strain. (Max principal
strain is around the neck.)

Trabecular f* .

Lortfcal
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Table 2 Distribution of 3 parameters for sample generation

Parameter Distribution

Ecortical N(17.80, 2.10) (GPa)
TNeck N(1.58,0.26) (mm)
weight N(63.96, 15.90) (Kg)

bone (Ecortical), the thickness of cortical bone around the
neck (Tneck) and the weight of the individual. Each variable
follows a normal distribution with means and standard devi-
ations provided in Table 2. A total of 2000 samples were
drawn and evaluated through the finite element model from
which stress and strain information can be obtained. In this
work, failure (i.e., fracture) is assessed using the maximum
principal strain both in tension and compression (Bayrak-
tar et al. 2004). Other measures could be used (Doblaré
and Garcia J 2003), however the choice of the measure
does not remove any of the generality of the conclusions
of the article. The thresholds chosen for the maximum
principal strains are 1.04% in compression and 0.73% in
tension (Grassi et al. 2012). Based on this failure crite-
rion, samples can be classified into safe (4-1) or failed (—1)
classes.

In the three dimensional space, the data is separable
because the output of the finite element model is determin-
istic (Fig. 5). Projection of the three-dimensional samples
onto the Ecorical and Tneck plane leads to non-separable
samples as shown in Fig. 5.

t shaft

(b)
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Fig.5 3 dimensional SVM with
separable data (left). Projection
onto the (Ecortical and TNeck)
space (right)

Fig. 6 Examples of training (a)
and validation (b) sample sets

4.3 Parameter selection using AUC, Acc, and Bacc.

Based on the two-dimensional non-separable samples, the
three cross-validation metrics can be used for parameter
selection as well as validation of the selected model. For this
purpose, the data is randomly split into training and valida-
tion sets of equal size as shown in Fig. 6. Parameters of the
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the validation set.
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Fig. 7 Training samples and SVMs selected based on different validation metrics

SVMs with highest scores from cross-validation as well
as the training sample set are depicted in Fig. 7. The scores
for the grid used in the selection of the parameters (C, y)
and the corresponding optima are shown in Fig. 8. It is
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Fig. 8 Maps of validation metrics on a grid along with the corresponding maxima
Table 3 Validation metrics (scores) and 95% confidence intervals
SVM selected Score [95% CI] Difference from
using: AUC Acc Bacc Ly, [95% CI) Ref. L, *
AUC 0.73 [0.68 0.78] 0.68 [0.65 0.71] 0.65 [0.60 0.71] -3.02 [-4.03 -2.06] 28.78%
Acc 0.58 [0.51 0.64] 0.85 [0.83 0.87] 0.55 [0.51 0.60] -10.64 [-13.30 -8.16] 353.40%
Bacc 0.67 [0.61 0.73] 0.70 [0.67 0.73] 0.63 [0.57 0.69] -3.90 [-5.11 -2.77] 66.08%

Reference L£,,=-2.35 [-3.02, -1.78]

noteworthy that the SVM selected using the basic accuracy
metric leads to “over-fitting” and will have a poor predictive
capability.

Table 3 provides the results for the weighted likeli-
hood which is compared to the reference value described in
Section 3. Figure 9 depicts the convergence of the weighted

N

2t d
e
3
2
=
—
e
D)
B
b
.g

-8t Weighted Likelihood 1

— — = 95% Confidence Interval
-10

20 40 60 80 100
% of samples used

Fig. 9 Evolution of the weighted likelihood £,, and its 95% confi-
dence interval as a function of the number of training samples. The
reference L, is the value at convergence

@ Springer

likelihood as a function of the number of training samples
which is used to obtain the reference likelihood value.

From this point on, this article will not consider accuracy
(Acc) metric since it is not suitable (and this is a well-known
problem) in the case of unbalanced data.

4.4 Influence of separability, unbalance, and training
sample size

This section extends the previous study to different levels of
separability, unbalance, and sizes of training sample sets.

4.4.1 Level of separability

In order to create configurations with different levels of
separability, the spread of fractured samples in sub-space
of Ecortical and Tneck Was modified. For this purpose, an
isoprobabilist transformation between the original normal
distributions and new Weibull distributions was used:

nm¢m=¢(”fm)J=L2 (12)

Oj

where F(x;|a, b) is the cumulative distribution function
of Weibull distribution with parameter a and b. ® is the
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22 25

cumulative distribution function of the standard normal dis-
tribution. w; and o; are the empirical mean and standard
deviation of variables Ecortical and Tneck separately. The
parameters of the Weibull distribution were modified to
control the spread.

In addition to the original distribution (Fig. 5), two new
levels of separability are introduced (Fig. 10 a and b). These
three levels of separability will be referred to as Configu-
ration 1,2 and 3. Configuration 3 refers to the original case
without transformation.

Figure 11 shows the evolution of weighted likelihood

Fig. 10 Different sample configurations with two levels of
separability as well as its 95% confidence interval for both sample
configurations 1 and 2. The evolution is depicted as a
Fig. 11 Evolution of £,, and its 0 0
95% confidence interval for the
two separability levels as a "g ) - =2
function of number of training B S /_/\—_\__‘-
samples = 4 = -4
< - £
3 a6
T -6 T
= = -8
.80 )
() =
= -8 Weighted Likelihood = -10 Weighted Likelihood
10 95% Confidence Interval 0 95% Confidence Interval

20 40 60 80 100
% of samples used

(a)  Configuration 1.

20 40 60 80 100
% of samples used

(b)  Configuration 2.

Table 4 Validation metrics and 95% confidence intervals for level of separability “Configuration 1”

SVM selected Score [95% CI]

using: AUC
AUC 0.97 [0.96 0.98]
Bacc 0.97 [0.96 0.98]

* Reference £,,=-0.33 [-0.57, -0.17]

Acc

0.89 [0.87 0.91]
0.83 [0.81 0.85]

Difference from

Bacc Ly, [95% CI1] Ref. £y, *
0.9310.91 0.95] -0.35 [-0.69 -0.16] 6.05%
0.90 [0.88 0.92] -0.72 [-1.50 -0.20] 118.67%

Table 5 Validation metrics and 95% confidence intervals for level of separability “Configuration 2”

SVM selected Score [95% CI]

using: AUC
AUC 0.92 [0.88 0.94]
Bacc 0.91 [0.88 0.94]

*Reference L,,=-2.39 [-3.26, -1.58]

Acc

0.82[0.79 0.84]
0.84 [0.82 0.86]

Difference from

Bacc L, [95% CI) Ref. L, *
0.83 [0.79 0.87] -2.49 [-3.78 -1.31] 4.21%
0.84 [0.80 0.88] -2.92 [-4.51 -1.54] 22.33%
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Fig. 12 Comparison of weighted likelihood between the three levels
of separability
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function of the number of training samples. Reference val-
ues of weighted likelihood for sample configuration 1 & 2
as well as their 95% confidence intervals are given in
Tables 4 and 5.

Results on sample separability configuration 1 and 2 are
listed in Table 4 and 5 separately.

Figure 12 shows that as the samples become more sepa-
rable, weighted likelihood from the SVM selected based on
AUC is closer to the reference value. In addition, its 95%
confidence interval is smaller than the SVM selected based
on balanced accuracy.

4.4.2 Level of unbalance

This section studies the change of weighted likelihood and
its 95% confidence interval with different levels of unbal-
ance by varying ratios between safe (4+1) and failed (—1)
classes (Fig. 13). Validation metrics (scores) and relative

Fig. 13 For separability level 27 2.7

“Configuration 2”, study of the Safe Safe
influence of unbalance by % N -

changing the ratio between safe 2.3 Fractured 2.3 ’ . Fractured

and failed samples

19

19

10 13 16 22 25 10 13 16 22 25
ECUT'tiCLZZ (GPCL) ECartical (GPCL)
(@ Case 1 (34 fractures) )  Case 2 (60 fractures)
2.7 2.7
Safe Safe
23 *  Fractured 23 - -+{ * Fractured
*
10 13 16 19 2225 10 13 16 19 22 25
ECortical (GPa) ECortical (GP&)
(©) Case 3 (455 fractures) @) Case 4 (911 fractures)
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Table 6 Performances of SVMs selected using different validation metrics for four levels of unbalance

SVM selected

Score [95% CI]

Difference from

using: AUC Bacc Ly Ref. £, *
Case 1 AUC 0.90 [0.87 0.93] 0.84 [0.77 0.90] -3.40 [-6.17 -1.14] 16.80%
Bacc 0.90 [0.87 0.94] 0.80[0.72 0.87] -5.30 [-8.92 -2.30] 82.20%
Case 2 AUC 0.90 [0.86 0.94] 0.81 [0.75 0.86] -3.95 [-6.08 -2.16] 55.33%
Bacc 0.90 [0.86 0.94] 0.83[0.78 0.88] -4.06 [-6.46 -1.92] 59.76%
Case 3 AUC 0.90 [0.89 0.92] 0.83[0.81 0.85] -1.75 [-2.12 -1.37] 20.76%
Bacc 0.90 [0.89 0.92] 0.83[0.80 0.85] -1.78 [-2.15 -1.45] 23.28%
Case 4 AUC 0.91 [0.90 0.92] 0.8 [0.82 0.85] -1.36 [-1.58 -1.15] 10.31%
Bacc 0.89 [0.87 0.91] 0.84 [0.82 0.86] -1.38 [-1.60 -1.15] 11.52%
I Reference £, for Case 1 is -2.91 [-4.63, -1.39].
2 Reference L, for Case 2 is -2.54 [-3.79, -1.50].
3 Reference L, for Case 3 is -1.45 [-1.67, -1.24].
4 Reference £, for Case 4 is -1.23 [-1.36, -1.12]
differences of weighted likelihood to the reference value are ~ 4.4.3 Number of samples

listed in Table 6.

Figure 14 shows that as the ratio between safe and
failed classes grows larger, the 95% confidence interval of
weighted likelihood becomes wider. The use of AUC pro-
vides better results than the balanced accuracy: the weighted
likelihood is closer to the reference value and also is associ-
ated with a tighter confidence interval.

Weighted Likelihood

X SVM from AUC
—-8r O SVM from Bacc
Reference value

0 5 10 15 20 25 30
Ratio between # safe and failed samples

Fig. 14 Weighted likelihood and its 95% confidence interval for
different levels of unbalance

This section studies the influence of the number of
samples. The ratio between failure and safe samples is
kept constant. Three cases with different sizes of train-
ing samples are created as shown in Fig. 15. Case 1 uses
40% of training samples, Case 2 uses 70% of training
samples and Case 3 contains all samples available in the
training set as shown in Fig. 10b. The size of the test set is
constant.

Results of weighted likelihood and relative difference
from the reference value are provided in Table 7. As the
size of training samples increases, SVMs selected based
on AUC demonstrate again a better performance than the
balanced accuracy (see Fig. 16).

5 Conclusion

This article compared three commonly used validation met-
rics for the selection of optimal SVM parameters in the case
of non-separable and unbalanced data. A systematic study
with different levels of separability and levels of unbalance
as well as sizes of training samples, were presented. The
datasets used were created from a finite element model for
the prediction of hip fracture. The results show the advan-
tage of the AUC metric, mostly for case with large degrees
of unbalance and non-separability. The next steps of this
study will involve higher dimensional problems along with
the use of actual clinical data.
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Fig. 15 Different sizes of
training samples used for
parameter selection

2.

2.

TNeck (mm)

7

3

Safe

*  Fractured
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Safe
Fractured

0.7
10 13 16

19
ECortical (GPa)
(a) Case 1 with 396 samples. (b)

2225

2 25 10 13 16 19
ECO'r'tical (GPCL>

Case 2 with 693 samples.

Table 7 Performances of SVMs selected using different metrics on validation set for 3 cases with various sizes of training sets

SVM selected

Score [95% CI]

using: AUC
Case 1 AUC 0.91 [0.88 0.93]
Bacc 0.84 [0.78 0.89]
Case 2 AUC 0.91 [0.88 0.94]
Bacc 0.85[0.80 0.90]
Case 3 AUC 0.91 [0.88 0.94]
Bacc 0.91 [0.88 0.94]

Difference from

Bacc Ly Ref. L, *
0.83 [0.78 0.87] -3.55[-5.30 -2.02] 48.89%
0.75 [0.70 0.80] -3.71 [-5.68 -2.00] 55.60%
0.83 [0.79 0.87] -3.26 [-4.91 -1.83] 36.75%
0.76 [0.71 0.81] -3.51 [-5.37 -1.93] 47.35%
0.84 [0.80 0.88] -2.49 [-3.86 -1.31] 4.35%
0.83 [0.79 0.87] -2.86 [-4.37 -1.53] 20.06%

! Reference £,,=-2.39 [-3.26, -1.58]

|
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—
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— -5t ]
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E‘D -6t |

]

z | j

X SVM from AUC
-8t O SVM from Bace |1
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-9 s s

4 6 8 10
# samples (*100, same level of unbalance)
Fig. 16 Weighted likelihood and its 95% confidence interval for

different sizes of training samples
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