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There exist several hip fracture prediction model using clinical
data. However, due to the complexity of hip fracture mechanism,
the use of clinical data only might not be sufficient to ensure an
accurate and robust hip fracture risk prediction model. In order
to improve the risk model, the authors propose to supplement
the clinical data with Finite Element (FE) data. The fusion of
the two types of data is performed using a deterministic and a
stochastic approach. The latter approach accounts for uncer-
tainties in loading and material properties of the femur, which
are propagated through the FE model.

Introduction

•Develop an SVM-based hybrid hip fracture risk prediction
model by fusion of clinical and FE data.
•Propagate uncertainties through the FE model to make the

computational content more realistic.

Objectives

•Combining clinical and FE data for hip fracture prediction
One possible way of combining the data is to construct the
prediction model in an “augmented space”. Outputs of the
computational simulations are used as additional input pa-
rameters for hip fracture prediction (Fig. 1).

Fig. 1: Combining clinical and computational
data for hip fracture prediction
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•Clinical data
The clinical dataset used in this study is a sub-cohort of
the Women’s Health Initiative (WHI). Besides conventional
risk factors (lifestyle, family history, etc.), the database also
includes hip geometric parameters (Fig. 2) extracted from
patients’ DXA images using Hip Structural Analysis.

Tab. 1: Conventional risk factors
for hip fracture.

Fig. 2: Implemented parameters in
the FE model.

Parameter
Ethnicity
Self-reported health
Fracture on/after age 55
Physical activity
Smoking status
Parent broke bone
Corticosteroid use
Diabetes treatment
Age
Height
Weight
Hip total BMD

Region Parameter Name

Total weight WT

Neck Neck-shaft angle NSA

Neck length NL

Outer diameter of 

cortical bone
NN_W

Thickness of 

cortical bone
NN_T

Inter-

trochanter

Outer diameter of 

cortical bone
IT_W

Thickness of 

cortical bone
IT_T

Shaft
Outer diameter of 

cortical bone
S_W

Thickness of 

cortical bone
S_T

Methods

•A fully parameterized FE model
Computational data are generated from a fully parameterized
femur FE model, which can accommodate a wide range of hip
geometry without relying on medical images. This model is
validated using the clinical data.

•Data fusion: Deterministic approach
This approach combines clinical and mechanical quantities
from FE outputs (e.g., deteministic strain values εD) in the
augmented space.

•Data fusion: Stochastic approach
The deterministic approach assumes that loads and bone ma-
terial properties are exactly known, which is not realistic.
The stochastic approach augments the clinical data using a
stochastic quantity. The quantity is chosen as the probability
(Pf) that εD is larger than a threshold. This probability is
calculated using Monte Carlo simulation.

Fig. 3: Pf calculation by considering uncertainties in load angle
and material properties of the trabecular and cortical bone.
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→Determination of the threshold θ
In this work, the threshold is chosen so as to maximize
the predictive ability (area under the ROC curve (AUC)) of
patient-specific Pf .

θ∗ = argmax
θ

AUCPf(θ)
Pf that corresponds to the threshold θ∗ is denoted as εS,
which replaces εD and is added to clinical data.

Methods - cont’d

•Predictive ability of the FE model
Contour of maximum principal strain is provided in Fig. 4. If
checked against the available clinical dataset, the FE model
shows an AUC of 74%, which indicates a good predictive ability.

Fig. 4: Contour of computed
maximum principal strain. The

max is at femoral neck.

Fig. 5: Distribution of max
principal strains of the WHI cohort

using the FE model (74% AUC)
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Results

•Data fusion for hip fracture prediction
Tab. 2: Comparison of 10-year hip fracture prediction

using deterministic and stochastic approaches.

Exp Parameters Validation dataset
AUC 95% CI ∆AUC

I
Geometric parameters + weight 0.77 [0.71, 0.83] -
Geometric parameters + weight + εD 0.81 [0.74, 0.87] 0.036
Geometric parameters + weight + εS 0.83 [0.76, 0.89] 0.053

II
Conventional parameters w/o BMD 0.82 [0.74, 0.88] -
Conventional parameters w/o BMD + εD 0.83 [0.76, 0.89] 0.015
Conventional parameters w/o BMD + εS 0.86 [0.80, 0.92] 0.045

III
Geometric + conventional w/o BMD 0.86 [0.79, 0.91] -
Geometric + conventional w/o BMD + εD 0.86 [0.79, 0.91] 0.001
Geometric + conventional w/o BMD + εS 0.87 [0.81, 0.93] 0.015

IV
Geometric + conventional parameters 0.87 [0.81, 0.92] -
Geometric + conventional parameters + εD 0.87 [0.81, 0.92] 0.002
Geometric + conventional parameters + εS 0.88 [0.83, 0.92] 0.013

→The deterministic approach increases AUC by 3.6% and 1.5%
in EXP I and II. No noticeable increase is observed for EXP
III and IV.

→The stochastic approach increases AUC by 5.3%, 4.5%, 1.5%,
and 1.3% for EXP I through IV. The optimal strain threshold
θ∗ is 0.84%.

Results - cont’d

•A novel hybrid risk model for hip fracture prediction is con-
sturcted by combining clinical and FE data.
•Both data fusion approaches tend to improve the predictive

ability of the risk model and the stochastic approach exhibits
larger improvement.

Conclusions

•Further investigation of data fusion schemes.
•Propagating other sources of uncertainties through FEA.
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