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This paper presents a new approach for model updating based on fidelity maps. Fidelity
maps are used to explicitly define regions of the random variable space within which the
discrepancy between computational and experimental data is below a threshold value. It
is shown that fidelity maps, built as a function of epistemic and aleatory uncertainties, can
be used to calculate the likelihood for maximum likelihood estimates or Bayesian update.
The fidelity map approach has the advantage of handling numerous correlated responses at
a moderate computational cost. This is made possible by the use of an adaptive sampling
scheme to build accurate boundaries of the fidelity maps. Although the proposed technique
is general, it is specialized to the case of model update for modal properties (natural
frequencies and mode shapes). A simple plate and a piano soundboard finite element model
with uncertainties on the boundary conditions are used to demonstrate the methodology.

I. Introduction

Computational models are used to predict the behavior of systems and minimize the use of experimental
testing. However, because of assumptions on boundary conditions, material properties etc., the compu-
tational model rarely matches the experimental data. For this reason, the model must be modified (or
“updated” or “tuned”) to obtain a satisfactory agreement. For instance, in computational modal analysis,
the objective is often to match natural frequencies and mode shapes obtained from experimental testing.1–3

Because uncertainties might have a pronounced effect on the response of the system, their inclusion in the
update process is now recognized as a necessity.

Until rather recently, model update was mostly associated with the deterministic minimization of the
difference, often in a least-square sense, between computational and experimental data. This is particularly
true in the field of modal analysis. The corresponding “one point solution” might be highly sensitive to un-
certainties with, as a consequence, a poor predictive capability. For this reason, statistical approaches have
been used to extract distributions of update parameters and responses. The two most common statistical
approaches are the maximum likelihood and Bayesian update. While the maximum likelihood approach4,5

finds the most “probable” values of the parameters to be estimated, the Bayesian method6,7 focuses on
refining the parameter distributions inferred from previous knowledge. In any case, both approaches require
the construction of a likelihood function.

Several difficulties are hampering the construction of an accurate likelihood in the general case. The
hurdles are due to the large computational costs associated with modern simulation techniques, the large
number of responses to be matched as well as their correlation and the presence of discontinuities. In addi-
tion, the construction of the likelihood should be made with as fewer assumptions as possible. However, in
the literature, many studies are based on, for instance, assumptions on the form of the error distributions.1,3

The proposed update approach is designed to provide a flexible scheme which tackles the aforementioned
technical difficulties such as the inclusion of correlated responses or the computational time. This work is
based on the construction of explicit boundaries of the domain of the parameters space where the discrepancy
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between model and experiments is below a given threshold. This domain with the corresponding boundaries
are referred to as “fidelity maps”. The boundaries are constructed using a support vector machine (SVM)
which is a classification technique used to explicitly separate data belonging to two classes.8–11 The use of a
classification technique has the advantage of allowing the inclusion of a large number of responses used for
the update. In addition, the correlation between the responses is implicitly accounted for.

The fidelity maps are built in a space of random variables that correspond to aleatory and epistemic
uncertainties. Some of the variables corresponding to epistemic uncertainties can be chosen to be estimated.
As an example, the fidelity map can be built in the space with a random load (aleatory uncertainty) and a
material property (epistemic uncertainty) that one wants to estimate. An accurate boundary can be created
using an adaptive sampling scheme developed by the authors.12–14 Once the boundary is obtained, a likeli-
hood can be constructed by generating Monte-Carlo samples for the aleatory variables. Once the likelihood
is constructed, parameters that need to be estimated can be found by maximizing the likelihood. It can also
be used for Bayesian update.

Although the proposed methodology is general, this article focuses on model update from modal testing.
In particular, this study considers the comparison of computational and experimental natural frequencies
and mode shapes. The mode shapes are compared using a modal assurance criterion (MAC) matrix whose
handling is made simpler with the fidelity maps. The focus application is the update of a finite element
model of a piano soundboard.

This article is constructed as follows. Section II provides a background on model updating where Sec-
tion II.E will focus on model updating from modal testing and describing the various quantities used. Section
III will describe the calculation of the likelihood for a given fidelity map. Section III.A provides a back-
ground on SVM and Section III.C on the adaptive sampling to accurately build the SVM. Finally, Section IV
will present results related to a demonstrative plate example and to the piano soundboard. Both examples
include uncertainties on the boundary conditions.

II. Background

Consider a measurement yexp. A model is available (e.g., a Finite Element model), with an output y
which should approximate yexp. The model uses two kinds of input parameters. First, the parameters that
need to be identified. This work refers to it as epistemic parameters, noted e, even so it could be just a
subset of all epistemic uncertainties of the model. Second, the parameters that cannot be controlled, with
irreducible uncertainties, referred to as the aleatory ones, noted a. In a same fashion it could be only a subset
of all aleatory uncertainties of the model. The actual, unknown, values of the parameters to estimate are
noted eact. The Probability density function (PDF) of a random variable X is noted fX and its cumulative
distribution function (CDF) is noted FX . For a vector of random variables we use bold notation (e.g. x)
and we refer to its ith component as xi.

II.A. Least Square Estimate

The Least Square Approach, and its more evolved derivation, the Generalized Least Square,15 is the
mostly used and simplest approach for model update. This approach is purely deterministic as it does not
include uncertainties. A typical least square formulation is:

eest = argmin
e

J(e,a?) (1)

with:

J(e,a?) =

nm∑
i=1

(yexpi − yi(e,a?))2 (2)

where nm is the dimension of the measurement vector. In the classic formulation, a? would not appear, as the
approach is purely deterministic and A represents stochastic quantities. However, it is possible to introduce
some uncertainties, by setting the stochastic quantities A to user defined deterministic value a?. These
values are obtained through expert knowledge or experience, classically the mean of the random variables,
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the median or the most probable value. This approach has been shown to present limitations mostly when
the model outputs are correlated, of different magnitude or different dispersions.2 In order to mitigate this
issue and include uncertainties, the likelihood4,5 is introduced as described in the following subsection.

II.B. Maximum Likelihood Estimate

A common approach to perform identification or model update is to use Maximum Likelihood Estimate
(MLE). This approach can be seen as half-deterministic, half-stochastic as random input can be used but
a single point results on the estimated parameters. This quantity is defined as the probability density that
y = yexp for a given e. By maximizing it, the estimates are the ones that make the model outputs most likely
to be equal to the measurements. Therefore we can express the likelihood of a given e as the conditional
joint probability density function (PDF) fY(E,A)|E=e(yexp). Consequently, a possible MLE formulation is:

eest = argmax
e

fY(E,A)|E=e(yexp) (3)

We can observe that the model output is now stochastic as the variability on A is taken into account
and propagated through the model. The core of this approach lies into being able to compute an accurate
joint conditional PDF. This point is detailed in Section III.B.

As mentioned previously, this approach provides a point estimate of eest. In order to obtain a distribution
of eest and have a fully stochastic approach, one can use the Bayesian approach.

II.C. Bayesian Approach

The Bayesian inference theory6,7 provides a way to derive a stochastic estimate based on stochastic
inputs. This approach is based on the Bayes formula:

fA|BfB = fB|AfA (4)

Specializing the Bayes formula to our problem, we have:

fE|Y(E,A)fY(E,A) = fY(E,A)|EfE (5)

Which can be rewritten as:

fE|Y(E,A) =
fY(E,A)|EfE

fY(E,A)
(6)

This is the functional expression, therefore, for a given set of epistemic parameters e and a given set of
measurement yexp:

fE|Y(E,A)=yexp(e) =
fY(E,A)|E=e(yexp)fE(e)

fY(E,A)(yexp)
(7)

where:

� fE(e) is called the prior. This corresponds to the existing knowledge on the distribution of the E.

� fE|Y(E,A)=yexp(e) is called the posterior. It is the updated distribution of parameters to estimate based
on the prior knowledge and a set of measurements yexp;

� fY(E,A)|E=e(yexp) is the likelihood;

� fY(E,A)(y
exp) is actually a simple normalizing constant which could be obtained by propagating all

uncertainties through the model. The latter being in most cases impossible to do, the use of techniques
such as Markov Chain Monte Carlo (MCMC) simulations16–18 allows one to circumvent this difficulty.
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II.D. Scientific Challenges

The Bayesian approach and Maximum Likelihood have their own sets of challenges. The Bayesian ap-
proach hinges on the availability of an accurate prior knowledge. Although it is not always possible, this
mainly involves expert knowledge, available data (e.g. for material properties) or quantification techniques
(e.g. Maximum Entropy principle19). In addition, the Bayesian approach requires the ability to sample the
posterior. This is traditionally done with MCMC16–18 which comes with its own set of hurdles (e.g, if the
posterior distribution is multi-modal3). Both the MLE and Bayesian approaches require the calculation of
the likelihood which is made difficult by the following points:

� Possibly correlated measurements;

� Numerous measurements;

� Possibly binary or discontinuous responses;

� Computationally intensive model;

� Exact analytical expression of the likelihood cannot be expressed.

The proposed work lies the foundation for an approach that mitigate the consequences of these hurdles.

II.E. Finite element Model updating based on modal data

The proposed methodology in this paper will be applied to the Finite Element Model (FEM) update for
modal data (e.g., natural frequencies and mode shapes). This is a typical application of model updating
with specific quantities used to compare model and experimental data:20,21

� Differences in natural frequencies values (e.g., Euclidean norm of difference). This quantity is tradi-
tionally minimized in the form of a residual through optimization. Various weights can be assigned to
the different frequencies if more emphasis is to be given to particular ones.

� Differences between the mode shapes. This is typically measured using the Modal Assurance Criterion
(MAC) matrix (see below).

� Differences between the Frequency Response Function (FRFs) measured using the FRAC (Frequency
Response Assurance Criterion).

� Mode orthogonality.
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Figure 1: Example of MAC matrix with 9 modes. The
matrix quantifies the match between experimental and
computational mode shapes. A perfect match would
have 1 (red) on the diagonal and 0 (blue) for cross
terms.

The “MAC” criterion is by far the most widely
used:

MACij =
(Φ∗Ti AΦexp,j)

2

(Φ∗Ti AΦi)(Φ∗Texp,jAΦexp,j)
(8)

where Φi is the ith computational mode shape
and “exp” stands for experimental. Φ∗Ti is the con-
jugate transpose of the mode shape. It is essential
to use the conjugate of the mode shape if the modes
are complex. A is often the identity matrix or the
mass matrix. For N modes, the MAC values can be
gathered in a matrix as depicted in Figure 1. The
MAC value is equal to unity for a perfect match of
modes. It should be as close to zero as possible for
cross terms.
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III. Fidelity maps and construction of the likelihood

E

A max ri < ε

E

A

Likelihood

Figure 2: Main idea of the fidelity map: define explic-
itly the regions of the space of random variables within
which the the model matches the experiments with an
accuracy ε.

The main concept of the proposed approach lies
in the identification of regions of the space of ran-
dom variables within which the error between the
model and the experiments is below a given thresh-
old ε. The boundaries of these regions, referred to
as fidelity maps, are constructed explicitly using a
Support Vector Machine (SVM). Once the bound-
aries are created, it can be shown (see Section III.B)
that the likelihood can be obtained efficiently. This
main idea is depicted on Figure 2. The main advan-
tages of the fidelity map approach stems from the
fact that no assumption needs to be made on the
form of the likelihood, that it can handle a large number of correlated responses, and , secondarily, it can
tackle problems with discontinuities. In addition, an adaptive sampling scheme allows to reduce the number
of function evaluations.

III.A. SVM-based fidelity map

A Support Vector Machine (SVM) is a classifier that is able to define boundaries between samples of
two different classes (e.g, feasible and infeasible).8–11 Being a classification method, its main advantage
stems from the fact that it can handle discontinuous and binary data.12 SVM can produce highly nonlinear
boundaries corresponding to non-convex and disjoint regions. Given N training sample, the SVM classifier
is expressed as:

s(x) = b+

N∑
k=1

λ(k)l(k)K(x(k),x) (9)

where x(k) is the kth training sample, λ(k) is the corresponding Lagrange multiplier, l(k) is the label (class)
that can take values +1 or -1, K is a kernel function and b is the bias. The boundary is then defined for
s(x) = 0. The prediction of the class of any point x is given by the sign of s(x). The Lagrange multipliers
λ(k) are strictly positive for the support vectors and zero for all other samples, which implies that the SVM
is entirely defined by the support vectors. Regarding the kernel K, several choices are available, such as
polynomial kernel and Gaussian kernel. In this work, we use a Gaussian kernel defined as:

K(x(k),x) = e−γ||x
(k)−x||2 , γ > 0 (10)

In order to build the fidelity maps, an SVM is initially trained using a design of experiments (DOE). The
class of each sample is defined based on the discrepancy between the model outputs and the experimental
“measurements”. To be feasible, a training sample must correspond to absolute relative differences between
the model outputs yi and the measurements yexpi less than a given threshold. In the general case, one could
set different thresholds εi for all the outputs. Therefore, the labels used to train the SVM are defined as:

l(k) =

{
+1 if ∀i r(k)i ≤ εi
−1 otherwise

where r
(k)
i =

∣∣∣∣∣y(k)i − y
exp
i

yexpi

∣∣∣∣∣ (11)

III.B. Likelihood computation

Given a fidelity map and a set of parameters to identify, it can be shown that as the εi tend to zero,
the likelihood can be obtained. This can be proven, without loss of generality and for the sake of simplicity,
with e and yexp as two scalars. The relation between a PDF and a CDF is given as:

fY (E,A)|E=e(y
exp) =

dFY (E,A)|E=e

dy
(yexp) (12)
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Using central finite differences, we have:

fY (E,A)|E=e(y
exp) = lim

ε→0

FY (E,A)|E=e(y
exp + ε)− FY (E,A)|E=e(y

exp − ε)
2ε

(13)

Recall that FX(x) = P [X < x], which leads to FX(x(1)) − FX(x(2)) = P [x(2) < X < x(1)]. It is then
possible to rewrite (13) as:

fY (E,A)|E=e(y
exp) = lim

ε→0

PE=e[Y (E,A) ≤ yexp + ε]−PE=e[Y (E,A) ≤ yexp − ε]
2ε

(14)

fY (E,A)|E=e(y
exp) = lim

ε→0

PE=e[y
exp − ε ≤ Y (E,A) ≤ yexp + ε]

2ε
(15)

The probability PY (E,A)|E=e[y
exp− ε ≤ Y ≤ yexp + ε] represents the probability of a given e to generate

outputs lying into the “feasible region” of the fidelity map and can be efficiently estimated using Monte
Carlo Sampling over the aleatory variables. As ε tends to zero, this probability tends to the likelihood value.
The idea is illustrated on Figure 3 in one dimension. A MLE can then be obtained through the use of an
optimization algorithm. As this works aim to demonstrate the general idea, in Section IV, the MLEs are
obtained by brute forcely computing the likelihood at a given number of set e and taking the maximum of
these values.

fY (E,A)|E=e(k)

y

(a) For e(k), propagate the uncertain-
ties through y, due to A.

fY (E,A)|E=e(k)

y
2εyexp − ε yexp + ε

(b) Compute the ratio of points falling
into the range of 2ε.

fY (E,A)|E=e(k)

y

2ε

yexp − ε yexp + ε

(c) As ε tend to zero, this ratio actually
becomes the likelihood value, up to a
constant of 2ε.

Figure 3: Illustration of likelihood computation using Monte Carlo Sampling as ε tend to zeros.

III.C. Map refinement and adaptive sampling

In order for the likelihood to be accurate, a small enough ε is needed as well as an accurate boundary.

III.C.1. Ensure at least one “feasible” sample

It might happen that while following the initial DOE, there is not a single sample that satisfies the initial
fidelity requirement imposed by the various (small) εi. Therefore no feasible sample is available to construct
an SVM. In order to solve this issue, the sample x(kc) with the minimum discrepancy over all the responses
is searched and assigned a +1 label. The index kc is:

kc = arg min
k

r(k)max where r(k)max = max
i

(
r
(k)
i

εi
− 1

)
(16)

III.C.2. Adaptive sampling

In order to build an accurate SVM at affordable cost, Basudhar et al.13,14 introduced an adaptive
sampling scheme that is used in this work. Algorithm 1 describes how the labels are defined during the
adaptive sampling scheme.
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Algorithm 1 Fidelity map. Adaptive Sampling.

Require: User define how small the fidelity map must be by setting ε;
1: Sample the space (composed of e ∪ a) according to a DOE of size n (here, CVT) : x(k) = [e(k),a(k)];
2: Evaluate all samples : y(k) = y(x(k));

3: Define the scaled residual relative to each measurements for all points : r
(k)
i =

∣∣∣∣yexp
i −y(k)

i

yexp
i

∣∣∣∣;
4: For each point, define their “feasibility” : r

(k)
max = max

i

(
r
(k)
i

εi
− 1

)
;

5: for j = n+ 1→ n+ nadapt do ; Begin adaptive sampling
6: Set all labels to -1: l(k) = −1 ∀k;

7: Define K =
{
ki|r(ki)max ≤ 0

}
and set l(ki) = +1 ki ∈ K;

8: if K = ∅ then;

9: Find kc = arg min
l

r
(l)
max and set l(kc) = +1;

10: end if
11: Build the SVM as explained in Section III.A;
12: Add an adaptive sample x(j) as explain in Section III.C.2;

13: Compute : y(j), r(j), r
(j)
max;

14: end for

Two types of samples are used in the EDSD adaptive sampling process:13,14

A primary sample is used to refine the boundary. Also referred as “maxmin” sample, it is defined as the
point in the space that maximizes the minimum distance to existing samples under the constraint that
it lies on the SVM boundary (i.e., s(x)=0).

A secondary sample is used to prevent a phenomenon referred as “locking” of the SVM, where adding
primary samples only generates small changes of the boundary. For this reason, this sample is also
referred to as ’anti-locking’ sample.

The schedule used in this work is two primary samples and one secondary sample. More details related
to the primary and secondary samples are provided in Appendix A.

IV. Results

The proposed methodology is applied to two FE model update problems. It is first applied to a simple
plate problem with uncertainty on the boundary condition and for which the Young’s modulus needs to
be identified. The approach is then applied to a piano soundboard with uncertainties on the boundary
conditions, and the material properties. For comparison purposes, the results are performed along with an
approach based on a residual as well as the product of the likelihoods corresponding to the various responses
(See Appendix B). Although the product of likelihoods is usually used for problems with independent mea-
surements error, it is used here to show how it behaves on correlated model outputs. The residual used in
the examples is defined as:

R =

N∑
i=1

 (λi − λexpi )2

λexpi

+ (MACii − 1)
2

+

N∑
j=1,j 6=i

MACij

 (17)

Note that the the residual is based on relative differences as opposed to absolute differences, which is
what is traditionally done.

IV.A. Simple Plate

As a first example, we consider a rectangular plate. The plate is simply supported. In order to model
the uncertainties in the displacement boundary conditions, one dimensional springs of stiffness K are used
for three sides of the plate (Figure 4). The finite element model of the plate is constructed with 80 shell

7 of 17

American Institute of Aeronautics and Astronautics



elements. We wish to identify the Young’s modulus E of the plate. The parameters are summarized in
Table 1. In order to define “experiments” the FE model is run with E = Eact and K = Kact. All the
examples are run with ε = 1% for all the responses. The identification of E is based on the first four modes.

K

E, ν, ρ, t

a

b

(a) Schematic representation. (b) FEM representation

Figure 4: Schematic and Finite Element representation of a simple plate. One side is simply supported while
the others are connected to the ground through springs, to model uncertainties on the boundary conditions.

Table 1: Parameters used for the plate example (S.I. units).

Deterministic Epistemic Aleatory

Parameter a b ν ρ t E K

Value, Distribution 1 1.5 0.33 7800 0.01 N/A U(2× 105, 106)

The fidelity map is constructed in the (E,K) space with 15 Central Voronoi Tesselation (CVT) samples.
The boundary is then refined with 50 additional adaptive samples. The likelihood is then constructed for
different values of E (one dimensional problem). For each value of E, the probability of being within the
fidelity map is calculated with 105 Monte Carlo samples according to the distribution of K. This provide a
conditional probability, which, for small values of ε is the likelihood, noted LHmcs. The value of E corre-
sponding to the maximum likelihood can then be obtained.

The proposed approach is compared to the results using the likelihood of the residual (LHres) and the
product of the likelihoods for the different responses LHprod (see Appendix B). These likelihoods are con-
structed using Kriging models22–25 trained with 65 CVT samples and Kernel Smoothing.26

The three likelihoods are constructed based on 6 combinations of Eact and Kact (see Table 2). The results
are depicted on Figures 5 and 6.

Table 2: Summary of the 6 experimental combinations and Figures associated (S.I. units).

Eact 185× 109 235× 109

Kact 3× 105 6× 105 9× 105 3× 105 6× 105 9× 105

Figures 5a & 5b 5c & 5d 5e & 5f 6a & 6b 6c & 6d 6e & 6f

It is clear that LHmcs show a higher robustness than the two other methods for that example. The
failure of the LHprod is obvious since the different natural frequencies are strongly correlated, therefore, the
assumption of independence leads to incorrect results. The inability for LHres to reach the maximum is not
straightforward. A loose explanation stems from the gathering of several responses within one quantities
that are correlated and might have different spreads.
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(e) SVM process
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Figure 5: Results of the plate example for Eact = 185 × 109 Pa and Kact = 3 × 105 N.m−1 (a and b),
Kact = 6× 105 N.m−1 (c and d) and Kact = 9× 105 N.m−1 (e and f). The figures on the left show the final
SVM while the ones on the right show the likelihoods (S.I. units).
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(c) SVM process
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(e) SVM process
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Figure 6: Results of the plate example for Eact = 235 × 109 Pa and Kact = 3 × 105 N.m−1 (a and b),
Kact = 6× 105 N.m−1 (c and d) and Kact = 9× 105 N.m−1 (e and f). The figures on the left show the final
SVM while the ones on the right show the likelihoods (S.I. units).
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IV.B. Piano soundboard

A Finite Element model of a piano soundboard was implemented in ANSYS based on the characteristics
of a 2.74 m Steinway piano. The model includes the soundboard with fourteen ribs running diagonally across
the backside of the board in addition to two elevated curved bridges on the top of it, namely the bass bridge
and the treble bridge (Figures 7aa and 7cb). Note that the model is exhaustively parametric and it can
accommodate any piano geometry as well as any rib or bridge layout, including the number and the angle
of the ribs. This model does not include down-bearing due to the strings27 and crowning.28 From a finite
element point of view, the board is modeled with shell elements while the ribs and the bridge are modeled
with beam elements (Figures 7b and 7d). In addition, the model is assumed linear with no stress stiffening.
Note that, in general, stress stiffening and geometric nonlinearities might have an influence on the natural
frequencies. However, this was not accounted in the proposed demonstrative example.

(a) Picture of the bridgesa (b) FEM representation (c) Picture of the
ribsb

(d) FEM represen-
tation

Figure 7: Picture and fully parameterized Finite Element model of a piano soundboard. Upper face contains
the bridges and the bottom face is stiffened with ribs.

Material properties of the wood, and their inherent variability, represent a crucial aspect of the model-
ing. Sitka spruce is the chosen wood when building the model which is an orthotropic material characterized
by distinct properties in the longitudinal, and transverse directions. Note that bridges and stiffeners are
assumed isotropic for simplicity. We wish to identify material properties such as the longitudinal Young’s
modulus and the wood density.

Figure 8: Global elements of a
Steinway pianoc. In the Finite
Element Model, springs are used
to simulate the link between the
soundboard and the case.

Among the difficulties to model a piano soundboard, the boundary
conditions play a major role in its modal behavior. These boundaries
replace the case of the piano which represents the attachment between
the edges of case, the soundboard and the cast Iron plate (Figure 8c).
For these reasons the soundboard is assumed to be clamped except for
the out of plane translational degree of freedom. This degree of freedom
is replaced by a translational spring stiffness K, as in the previous plate
example. Two cases of model updating are considered: one where only
the Young’s modulus of the soundboard E is to be identified whereas the
density of the soundboard ρ and the stiffness K of the springs are aleatory
random variables (Table 3a). The second case is where both E and ρ are
to be identified and only K is aleatory (Table 3b). It is noteworthy to
mention that the SVM needs to be constructed only once and can then
be re-used for various scenarios.

For this example, fictitious measurements are obtained by running the model with the following values:
Eact = 11× 109 Pa, ρact = 445 Kg.m−3 and Kact = 107 N.m−1. The identification is based on the first five
modes. The ε vector is set to:

ε =
[
0.002 0.002 0.002 0.002 0.002 0.1 0.00002

]T
(18)

where the 6th (resp. 7th) value is the restriction for all extra-diagonal MAC terms (resp. all diagonal MAC
terms).

apianotreasure.com
bwww.piano.christophersmit.com
ceinfotojedentag.blogspot.com
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Table 3: Parameters for the two scenarios applied to the piano soundboard (S.I. units).

(a) Parameters used for the piano soundboard, case with one parameter to
identify.

Deterministic Epistemic Aleatory

numerous E ρ K

numerous N/a U(430, 450) U(5× 106, 108)

(b) Parameters used for the piano soundboard, case with
two parameters to identify.

Deterministic Epistemic Aleatory

numerous E ρ K

numerous N/a N/a U(5× 106, 108)

The SVM is constructed using a 50 points CVT DOE and 200 adaptive sample points. The final SVM
is depicted in Figure 9a. The likelihood obtained in the first case is displayed on Figure 9b. The MLE gives
Eest = 10.85 × 109 Pa. The likelihood obtained in the second case is shown on Figure 9c. The MLE gives
Eest = 10.9 × 109 Pa and ρest = 445.64 Kg.m−3. Recall that the computational cost is only 250 calls of
the model. Nevertheless, the identified values are close to the actual ones.

(a) SVM for the piano soundboard ex-
ample.
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(b) 1D likelihood for the piano sound-
board example.
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(c) 2D likelihood for the piano sound-
board example.

Figure 9: Graphical results for the piano soundboard example.

V. Conclusion

An approach to perform model update using fidelity maps has been introduced. The construction of
explicit fidelity maps, constructed using an SVM in a space with aleatory and epistemic uncertainties, al-
lows one to efficiently calculate a likelihood with Monte-Carlo simulations. In order to obtain an accurate
boundary and reduce the number of model calls, an adaptive sampling scheme is used. Because SVM is a
classification method, a large number of model outputs, even correlated, can be used. Finally, this approach
do not rely on any assumption, except a user define vector of variables, ε.

The next steps of this research will involve an increase in the dimensionality of the problems solved in
order to check the scalability of the approach. In addition, importance sampling will be used to improve
the computation of the likelihood. Finally, the approach will be tested on a more realistic model of a piano
soundboard with nonlinear behavior and actual experimental modal testing.

VI. Aknowledgments

Support from the National Science Foundation (award CMMI-1029257) is gratefully acknowledged. The
authors would also like to thank Ms. Fatma Mokdad for her help in the construction of the Finite Element
Model of the piano soundboard.

12 of 17

American Institute of Aeronautics and Astronautics



References

1Marwala, T., Mdlazi, L., and Sibisi, S., “Finite Element Model Updating Using Bayesian Approach,” Arxiv preprint
arXiv:0705.2515 , 2007.

2Gogu, C., Haftka, C. G. R., Le Riche, R., J., M., and Vautrin, A., “Introduction to the Bayesian Approach Applied to
Elastic Constants Identification,” AIAA Journal , Vol. 48, No. 5, 2010, pp. 893–903.

3Nichols, J., Moore, E., and Murphy, K., “Bayesian identification of a cracked plate using a population-based Markov
Chain Monte Carlo method,” Computers & Structures, Vol. 89, 2011, pp. 1323–1332.

4Pratt, J., “FY Edgeworth and RA Fisher on the efficiency of maximum likelihood estimation,” The Annals of Statistics,
Vol. 4, No. 3, 1976, pp. 501–514.

5Aldrich, J., “RA Fisher and the making of maximum likelihood 1912-1922,” Statistical Science, Vol. 12, No. 3, 1997,
pp. 162–176.

6Press, S. and Press, J., Bayesian statistics: principles, models, and applications, Wiley New York, 1989.
7Carlin, B. and Louis, T., Bayes and empirical Bayes methods for data analysis, Vol. 7, Springer, 1997.
8Gunn, S., “Support vector machines for classification and regression,” ISIS technical report , Vol. 14, 1998.
9Vapnik, V., The nature of statistical learning theory, Springer Verlag, 2000.

10Christianini, N. and Taylor, S., “An introduction to support vector machines (and othre kernel-based learning methods),”
2000.

11Schölkopf, B. and Smola, A., Learning with kernels: Support vector machines, regularization, optimization, and beyond ,
the MIT Press, 2002.

12Basudhar, A., Missoum, S., and Harrison Sanchez, A., “Limit state function identification using support vector machines
for discontinuous responses and disjoint failure domains,” Probabilistic Engineering Mechanics, Vol. 23, No. 1, 2008, pp. 1–11.

13Basudhar, A. and Missoum, S., “Adaptive explicit decision functions for probabilistic design and optimization using
support vector machines,” Computers & Structures, Vol. 86, No. 19-20, 2008, pp. 1904–1917.

14Basudhar, A. and Missoum, S., “An improved adaptive sampling scheme for the construction of explicit boundaries,”
Structural and Multidisciplinary Optimization, Vol. 42, No. 4, 2010, pp. 517–529.

15Kariya, T. and Kurata, H., Generalized least squares, Vol. 560, John Wiley & Sons Inc, 2004.
16Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H., “Equation of State Calculations by Fast

Computing Machines,” The Journal of Chemical Physics, Vol. 21, No. 6, 1953, pp. 1087–1092.
17Hastings, W., “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, Vol. 57, No. 1,

1970, pp. 97.
18Andrieu, C., De Freitas, N., A., D., and I., J. M., “An Introduction to MCMC for Machine Learning,” Machine Learning,

Vol. 50, 2003, pp. 5–43.
19Jaynes, E., “Prior probabilities,” Systems Science and Cybernetics, IEEE Transactions on, Vol. 4, No. 3, 1968, pp. 227–

241.
20Allemang, R., “The modal assurance criterion (MAC): twenty years of use and abuse,” Proceedings, International Modal

Analysis Conference, 2002.
21Marwala, T., Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural

Dynamics, Springer, 2010.
22Sacks, J., Welch, W., Mitchell, T., and Wynn, H., “Design and analysis of computer experiments,” Statistical science,

Vol. 4, No. 4, 1989, pp. 409–423.
23Jones, D., “A taxonomy of global optimization methods based on response surfaces,” Journal of Global Optimization,

Vol. 21, No. 4, 2001, pp. 345–383.
24Forrester, A. and Keane, A., “Recent advances in surrogate-based optimization,” Progress in Aerospace Sciences, Vol. 45,

No. 1-3, 2009, pp. 50–79.
25Basudhar, A., Dribusch, C., Lacaze, S., and Missoum, S., “Constrained efficient global optimization with

support vector machines,” Structural and Multidisciplinary Optimization, 2011, First Published Online, DOI:
http://dx.doi.org/10.1007/s00158-011-0745-5.

26Bowman, A. and Azzalini, A., Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustra-
tions, Vol. 18, Oxford University Press, USA, 1997.

27Conklin Jr, H., “Design and tone in the mechanoacoustic piano. Part II. Piano structure,” The Journal of the Acoustical
Society of America, Vol. 100, 1996, pp. 695.

28Mamou-Mani, A., Frelat, J., and Besnainou, C., “Numerical simulation of a piano soundboard under downbearing,” The
Journal of the Acoustical Society of America, Vol. 123, 2008, pp. 2401.

13 of 17

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1007/s00158-011-0745-5


A. Details about primary and secondary samples

This appendix provide further information about the equation and the motivations of the two adaptive
samples used for EDSD. Although complete, this appendix is solely a summary of the work of Basudhar et
al.14

A.A. Max-Min Sample

To refine the SVM, max-min samples are selected on the current SVM boundary at maximum distance to
the closest neighbor training sample (Equation 19). A sample on the boundary has the highest probability
of misclassification and compels the boundary to change. The selection of samples in sparsely populated
regions avoids redundancy of data. Figure 10 shows the selection of a max-min sample and the SVM
boundary update due to it.

xmm = arg max
x

(
min
i
‖x− xi‖

)
, subject to: s(x) = 0 (19)

The objective function of this “max-min” problem (Equation 19) is non-differentiable, but it is made
differentiable by reformulating with an additional variable z:

xmm = arg max
x,z

z, subject to: ‖x− xi‖ ≥ z ∀ i = 1, ..., N , s(x) = 0 (20)

In this work, the differentiable formulation of this global optimization problem is solved using a local
optimizer (sequential quadratic programming) starting from multiple starting locations given by the existing
training samples.

x1

x2

x1

x2 updated
SVM boundary

distance to closest
sample (maximized)

SVM boundary s(x)=0

s(x)=+1

SVM boundary before max-min sample evaluation SVM boundary after max-min sample evaluation

max-min sample evaluated

max-min sample

Figure 10: Selection of a new training sample on the SVM boundary while maximizing the distance to the
closest sample. The right figure shows the updated SVM decision boundary.

A.B. Anti-Locking Sample

Although max-min samples always change the SVM, the change may be very small, which is referred to
as “locking”. “Locked” parts of the SVM boundary are close to a training sample of one class, but far from
any training sample of the other class (Figure 11). This situation is efficiently remedied by adding another
training sample on the sparsely populated side of the boundary. The sample is placed close, but not on
the current SVM boundary. Therefore evaluating an anti-locking sample either leads to a more balanced
distribution of samples on both sides of the boundary or to a significant change in the SVM boundary (Figure
11).
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Selection of the sample is a two step process: First locate xb, the point on the boundary for which ∆d,
the difference between the distance to the closest feasible sample x−c and the distance to the closest infeasible
sample x+

c is greatest:

xb = arg max
x

(∥∥x− x−c
∥∥− ∥∥x− x+

c

∥∥) , subject to: s(x) = 0 (21)

Next define a hypersphere with radius R = 0.25 ·∆d centered at xb. The new anti-locking sample xal is
selected within the hypersphere by minimizing s(xc)s(x), where xc is the closest existing training sample.
This essentially yields an anti-locking sample on the opposite side of the boundary to xc, at maximum
distance to the boundary inside the hypersphere:

R = 0.25 ·∆d = 0.25 ·
(∥∥xb − x−c

∥∥− ∥∥xb − x+
c

∥∥) (22)

xal = arg min
x

s(x)s(xc), subject to: ‖x− xb‖ ≤ R (23)

x2

x1

2

R

R

x2

x1

SVM boundary s(x)=0

actual boundary

new SVM boundary
(significant change)

SVM boundary before anti-locking sample evaluation SVM boundary after anti-locking sample evaluation

evaluated

anti-locking sample 

anti-locking sample

xb

xc

Figure 11: Evaluation of an anti-locking sample to prevent locking of the SVM boundary.

B. Product of the likelihoods and Residual

For comparison with the proposed approach, this appendix introduces two other methods to perform a
scalable likelihood computation. These two approaches were used in the result section IV.

B.A. Product of the likelihood formulation

A widely used approach is to consider the likelihood as a product of “marginal” likelihoods. However
this approach relies on a strong assumption (usually wrong) that the measurements are independent. The
formulation of the product of the likelihood is straightforward:

eest = argmax
e

nm∏
i=1

fYi(E,A)|E=e(yexpi ) (24)

The only appeal of this approach is that the “marginal” likelihoods can be computed as explained in
Section B.C. In the case of costly models, surrogates such as Kriging22–25 can be used for each individual
measurement.
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B.B. A Residual-Like method

For the sake of continuity with already existing methods, we derive a method based on a Residual. No
claim is made about its efficiency, this approach is built to provide a comparison with the method introduced
in III.B. The first idea is of course to define the Residual as:

r(e,a) =

nm∑
i=1

(yexpi − yi(e,a))2 (25)

However, it is usually a good idea to scale the different measurements as they can represent different
quantities. A much more stable way to define the Residual is then to normalize the terms:

r(e,a) =

nm∑
i=1

(
yexpi − yi(e,a)

yexpi

)2

(26)

It is then possible to define the estimated values as:

eest = argmax
e

fR(E,A)|E=e(0) (27)

It is noteworthy to mention that this method does not compute exactly the likelihood. This quantity can
be computed as explained in Section B.C. It is noteworthy to mention that sometimes this approach and the
product of the likelihoods formulation end up to be the same, if assuming only independent normal noises
on the measurements.

B.C. Sequential uncertainty propagation

Constructing an empirical PDF (or joint) without presuming of its shape is a process that can usually
only be done for low dimensionality. In this work, only PDFs of dimension 1 are computed, as described in
Sections B.A and B.B. For each given e(k), the uncertainties due to A are propagated and the probability
density corresponding to the measurement is read. The process is shown on Figure 12 for e and yexp scalar.
Referring to the step where it is needed to fit the conditional PDF of Y in order to read the value at the
measurement (the value of the likelihood for e(k)), several ways are available in 1D or even for uncorrelated
multidimensional one such as Gaussian mixture or kernel smoothing.26 A general idea of Kernel Smoothing
is depicted in Section B.D.

fY (E,A)|E=e(k)

y

(a) For c(k), propagate the uncertainty
through y, due to U and fit the PDF on
top of it.

fY (E,A)|E=e(k)

y

LH(k)

yexp

(b) Read the value of the conditional
PDF for y = ym (LH(k)).

fY (E,A)|E=e(y
exp)

e

LH(1)

LH(nk)

e(1) e(nk)

(c) Repeat the process for k = 1..nk in
order to construct the likelihood over
the design space.

Figure 12: Description of the likelihood construction using sequential uncertainty propagation.

B.D. Kernel smoothing

Assuming the existence of a kernel K(x) satisfying
∫
K(x)dx = 1 and symmetry about 0, for a set of

point {x1, . . . , xn}, fX(x) can be estimated as:
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fX(x) =
1

n

n∑
i=1

K(x− xi) (28)

In fact, the kernel is often expressed as Kh(x) where h is a parameter allowing to tune the kernel for
better results. A basic illustration of this process is shown on Figure 13. For further informations, we refer
the interested reader to.26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 13: Basic illustration of the kernel smoothing density idea.
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