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Abstract This brief note describes the generalization of the
“max-min” sample that was originally used in the update
of approximated feasible or failure domains. The general-
ization stems from the use of the random variables joint
distribution in the sampling scheme. In addition, this note
proposes a numerical improvement of the max-min opti-
mization problem through the use of the Chebychev norm.

Keywords Max-min sample · Chebychev norm · Adaptive
sampling · Reliability

1 Introduction

The use of surrogates has become omnipresent in reliabil-
ity assessment, design optimization, and reliability-based
design optimization. In many cases, the surrogates are
initially constructed from a design of experiments and
refined using an adaptive sampling scheme. This idea is
used for example in Efficient Global Optimization (Jones
et al. 1998, EGO), Efficient Global Reliability Assessment
(Bichon et al. 2008, EGRA), and Explicit Design Space
Decomposition (Basudhar and Missoum 2010, EDSD).

Sparsity of data is often the basis for the choice of an
adaptive sampling scheme. For instance, the Kriging update
scheme for optimization, EGO, uses the sparsity informa-
tion through a distance-based correlation function (Jones
2001). EDSD uses it more explicitly through a “max-min”
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sample (Basudhar and Missoum 2008, 2010) that maxi-
mizes the minimum distance to existing samples (i.e., maxi-
mum sparsity). In Regis and Shoemaker (2005), a minimum
distance between samples is enforced through a constraint.

The max-min sample, which is the focus of this paper,
was mostly used to refine approximations of the feasible
or failure domain using Support Vector Machines (SVMs).
However, its formulation did not account for the various
probabilistic distributions of the variables. As a conse-
quence, this was an issue for probability of failure estimates
since samples were wasted in regions with low probabilistic
content. For this reason, this article introduces a general-
ization of the max-min sample which accounts for the joint
distribution of the variables. Note that the use of such a
sample is not restricted to SVM surrogates. A similar idea
was used in Wang and Wang (2013), where an estimated
improvement criterion is used to draw more attention in high
probabilistic content region.

In addition, this note presents a substantial numerical
improvement by replacing the max-min problem using the
Chebychev norm. This norm has the advantage of trans-
forming the problem into a traditional differentiable and
unconstrained optimization problem.

This article is structured as follows: Section 2 provides a
background on the max-min samples and presents the gener-
alized formulation. Section 3 describes the implementation
using the Chebychev norm. Finally, Section 4 describes a 10
dimensional reliability example.

2 Background and basic formulation

The primary objective of this work is to extend and gen-
eralize the notion of max-min sample that was introduced
by Basudhar and Missoum (2010). The sample was used

mailto:smissoum@email.arizona.edu
mailto:lacaze@email.arizona.edu


S. Lacaze, S. Missoum

to update an approximation of the boundary of feasible or
failure domain constructed using an SVM. The max-min
sample was chosen as far away from the Ns existing training
samples while lying on the SVM. It was found by solving
the following global optimization problem:

max
x

min
i=1,...,Ns
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s.t. x ∈ ∂�̃F

li ≤ xi ≤ ui i = 1, . . . , Nv

where ∂�̃F is the boundary of the approximation �̃F of the
feasible or failure domain �F .

This formulation distributes samples “uniformly” on the
boundary. This is an attractive feature if one wants to
approximate �F globally over the whole space or in the case
of deterministic optimization. However, the approach was
also used for reliability assessment. In this case, a uniform
distribution of samples is no longer efficient since a higher
accuracy of the failure domain should be obtained in places
where the probabilistic content is larger. For this purpose,
the objective function in (1) was generalized by introduc-
ing the joint probability density function (PDF), fX, of the
variables:
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This novel formulation is constructed so that the max-
min samples follow the joint PDF fX while enforcing
maximum spread. To demonstrate this feature, consider the
case where the samples are not constrained to lie on the
boundary. Figure 1a depicts the case where samples are
sequentially added using the original formulation. In this
case, the result is similar to what would be obtained using an
optimal Latin Hypercube sampling algorithm (Park 1994).
Figure 1b depicts samples generated using the generalized

formulation with normal uncorrelated variables. Note that
the generalized formulation reduces down to the original
one (1), in the case of uniform distributions.

A proof of concept of the ability of the proposed
formulation to actually follow the joint distribution fX
is proposed using numerical experiments of up to 30
dimensions in the case of a joint normal PDF. This was
done both graphically (Fig. 2) and numerically by means
of a Kolmogorov-Smirnov test at the 5 % significance
level.

3 Implementation using the Chebychev norm

In the previous work by Basudhar and Missoum (2010), the
non-differentiability of the max-min problem was removed
using the following constrained problem:

max
x, z

z (3)

s.t. z −
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∣ ≤ 0 i = 1, . . . , Ns

x ∈ ∂�̃

li ≤ xi ≤ ui i = 1, . . . , Nv

which transforms (1), an Nv dimensional optimization prob-
lem with one constraint into (3), a Nv + 1 dimensional
optimization problem with Ns + 1 constraints.

In order to remove the Ns additional constraints and keep
(2) as an unconstrained formulation, the max-min prob-
lem is formulated using the Chebychev distance ||v||∞ =
max(v). It can easily be shown that the Chebychev distance

Fig. 1 Example of classic and
generalized max-min sample
patterns
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Fig. 2 Graphical proof of concept of the ability of the generalized formulation to draw samples from a given joint distribution. Empirical marginal
CDFs FXi

compared to standard normal CDF � (red thick dotted line) for 2, 10, and 30 dimensions based on 400 generalized max-min samples

(“norm infinity”) can be approximated using the Minkowski
metric (“p-norm”) for large p (e.g., p = 40):

||v||∞ = max(v) ≈
p�1

||v||p =
(

Ns∑

i=1

v
p
i

) 1
p

(4)

where each vi are positive. Noting that
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(
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Finally, the generalized formulation (2) can be written as:

max
x
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which, in addition of being unconstrained, is also differen-
tiable. In fact, analytical sensitivities can easily be derived
and the optimization problem can be solved efficiently using
a gradient-based method.

Note that logarithms have been introduced because as
the dimension increases, the numerical values of fX drops
to 0. Consider the maximum value of the multidimensional
standard normal joint PDF φ, which is obtained at the ori-
gin. For Nv = 2, φ(0) ≈ 0.16 whereas for Nv = 50,
φ(0) ≈ 1.11 × 10−20.

4 Application to reliability assessment

For reliability assessment, the boundary of the failure
domain needs to be properly approximated by constraining
the max-min sample on the boundary. Figure 3 depicts the

differences between the original and generalized max-min
formulation for a two-dimensional joint standard normal
distribution and a given limit-state. The probability of fail-
ure is defined as

Pf = P [X ∈ �F ] , (6)

and is iteratively obtained by refining an SVM as described
in Algorithm 1.

4.1 Use of the generalized max-min

After the training of the SVM at iteration k, the generalized
max-min sample to update the SVM approximation of the
failure domain is given by:

max
x
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s.t. x ∈ ∂�̃
(k)
F
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Fig. 3 Distribution of original
and generalized max-min
samples along a given limit state
for a two-dimensional joint
standard normal distribution

a b

4.2 Use of the original max-min

For comparison purpose, we will also use the original
version of the update:

max
x

min
i=1,...,Ns
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s.t. x ∈ ∂�̃F

x ∈ �U

where �U is an update region. The need for an update
region comes from the fact that max-min samples in the
case of infinite support distributions are ill-defined. The
type and characteristics of the update region is discussed
in Appendix. It is noteworthy that the generalized max-
min formulation does not require any update region as this
information is embedded within fX.

4.3 Example

As a numerical example, consider the following 10
dimensional highly non-linear analytical limit state
where failure is defined as (Engelund and Rackwitz
1993):

∑10
i=1 log Xi

2
+ 12 ≤ 0 , Xi ∼ N(0, 1) (9)

Figure 4 shows the convergence of the estimated proba-
bility of failure using the generalized and original max-min
updates. In addition, the generalized max-min sample was
run in parallel by adding 10 samples per iteration before
updating the SVM. All probabilities are calculated using
Monte-Carlo simulations with a 5 % coefficient of varia-
tion. The dashed black line shows the actual probability of
failure (estimated using the actual limit state). Note that

Fig. 4 Convergence of the
probability of failure estimate
using the original max-min
sample (red line with circles),
the generalized max-min sample
(blue line with square), and 10
generalized max-min samples in
parallel (green line with
triangles). The black dashed line
represents the estimated
probability using the actual limit
state
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the problem in (2) was solved using a sequential quadratic
programming (SQP) with multiple starting points.

The figure clearly shows the advantage of using the gen-
eralized max-min formulation over the traditional one. In
addition, the convergence of the green line clearly shows the
potential of using this sample in parallel.

Note that the original max-min sample, represented by
the red line, exhibits a slow convergence, which is a well
known result due to a phenomenon referred to as locking
of the SVM. This was solved in previous work using an
additional sample referred to as the “anti-locking” sample
(Basudhar and Missoum 2010).

5 Conclusion

In this note, the orignal max-min sample is generalized
to account for the joint distribution of the variables. In
addition, a novel efficient implementation based on an
approximation of the Chebychev distance is proposed.
Application to an analytical limit state shows promising
results for reliability assessment with both serial and parallel
updates.

The next step of this work will involve the use of the
generalized max-min within a reliability-based design opti-
mization algorithm as well as for reliability assessment with
correlated variables.
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Appendix

Update region size for original max-min

For reliability assessment, the traditional max-min samples
need to be constrained within an update region. The nature
and size of the update region are related to the distribu-
tions chosen as well as the probability of failure value. In
the case of uncorrelated standard normal distributions (as in
this paper), the update region should be an hypersphere. The
radius of the hypersphere, R, can be linked to the probability
of failure based on the fact that the norm of standard normal

variables follows a χ2 distribution (Katafygiotis and Zuev
2008):

(10)

From this, one can define R, such that, for instance, the
hypersphere excludes a fraction (10 % in this note) of the
estimated probability of failure. This way, the update region,
is iteratively defined as:

�
(k)
U =

{

x
∣
∣
∣ ||x|| ≤ R(k)

}

with R(k) =
√

χ2−1

Nv

(

1 − 0.1P
(k)
f

)

(11)

where P
(k)
f is the probability of failure calculated using the

failure domain approximation at iteration k.
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