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ABSTRACT: This paper introduces a new approach for model calibration based on fidelity maps.
Fidelity maps refer to the regions of the parameter space within which the discrepancy between compu-
tational and experimental data is below a user-defined threshold. It is shown that fidelity maps, which
are built explicilty in terms of the calibration parameters and aleatory variables, provide a rigourous ap-
proximation of the likelihood for maximum likelihood estimation or Bayesian update. Because the maps
are constructed using a support vector machine classifier (SVM), the approach has the advantage of han-
dling numerous correlated responses, possibly discontinuous, at a moderate computational cost. This is
made possible by the use of a dedicated adaptive sampling scheme to refine the SVM classifier. A simply
supported plate with uncertainties in the boundary conditions is used to demonstrate the methodology.
In this example, the construction of the map and the Bayesian calibration is based on several natural
frequencies and mode shapes to be matched simultaneously.

1 INTRODUCTION

Computational models are used to predict the
static or dynamic behavior of structures. However,
there might be marked discrepancies between
the prediction of the model and experimental
data. In order to reduce this difference, the model
might need to be calibrated (or updated) by
searching the values of parameters (e.g., material
properties) that best “match” the data. For
instance, in modal analysis, the characteristics of
the model (e.g., stiffness and mass distribution)
will be modified so as to match experimental nat-
ural frequencies and mode shapes (Marwala 2010).

The most widely used approach in engineering ap-
plications is the least square approach. However,
because uncertainties might have a pronounced ef-
fect on the responses of the system, this approach,
often implemented in a deterministic way, is in
general not suitable (Chen, Duhamel, & Soize
2006, Gogu, Haftka, Le Riche, Molimard, Vautrin,
et al. 2010). For this reason, statistical approaches
have been favored to extract distributions of
update parameters and responses. The two most
common statistical approaches are the maxi-
mum likelihood estimate and Bayesian update.
While the maximum likelihood approach (Pratt
1976, Aldrich 1997) finds the most “probable”
values of the parameters to be estimated, the
Bayesian method (Press & Press 1989, Carlin

& Louis 1997) focuses on refining the parame-
ter distributions inferred from previous knowledge.

The implementation of these approaches, which
both require the assessment of the likelihood,
is severely hampered by difficulties such as the
large computational time per simulation and
the inclusion of both aleatory and epistemic
uncertainties. In addition existing approaches are
not able to handle a large number of responses to
match without making restrictive independence
assumptions. Further difficulties appear in the
case of discontinuous responses.

The proposed update approach is designed to
provide a flexible scheme which tackles the
aforementioned technical difficulties such as the
inclusion of a large number of correlated responses,
the computational time, and discontinuities. This
work is based on the construction of the explicit
boundary of the region of the parameter space
where the discrepancy between model and experi-
ments is below a given threshold. This domain is
referred to as “fidelity map” and can be shown to
provide a rigorous and efficient approximation of
the likelihood.

The boundaries are constructed using a Support
Vector machine (SVM) which is a classification
technique used to explicitly separate data be-
longing to two classes (Gunn 1998, Vapnik 2000,



Christianini & Taylor 2000, Schölkopf & Smola
2002). All the computational cost is therefore con-
centrated within the construction of the boundary
while the likelihood can be approximated from
the fidelity map. The main advantages of the
approach stems from the classification paradigm
which allows one to manage a large number of
(potentially discontinuous) responses simultane-
ously.

This article is constructed as follows. Section 2 pro-
vides the notation and the general idea of the pro-
posed work. Section 3 describes the computation
of the likelihood and posterior distribution for a
given fidelity map. Section 3.1 provides a back-
ground on SVM and Section 3.2 on the adaptive
sampling to accurately build the SVM. Finally,
Section 4 will present results for a demonstrative
example of a plate with uncertainty on the bound-
ary conditions.

2 ILLUSTRATIVE EXAMPLE AND
NOTATIONS

Consider the responses y of a model and the
corresponding experimental measurements yexp.
The responses of the system are governed by two
types of inputs: the first set are the parameters
to estimate X (e.g., material property) while the
second one, A, will be referred to as “aleatory” pa-
rameters. The probability density function (PDF)
of a random variable X is noted fX and its cu-
mulative distribution function (CDF) is noted FX .

As an illustrative example, consider a model in the
form of a cantilever column (e.g., representative
of a building) with wind load (Figure 1(a)). In
this toy example, we wish to estimate the bending
stiffness of the column K ≡ X based on a set of
experimental data yexp (e.g., deflection δ) knowing
that the the column is subjected to a random load
F ≡ A with known probabilistic distribution.

F δ

K

(a) Model.

F

K

p experiments

n responses
∆δi < 1%

(b) Fidelity map.

Figure 1: Illustrative example. Calibration of the stiffness
K of a column subjected to a random (aleatory) load F
based on experimental responses.
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Figure 2: The fidelity map is then used to build an approx-
imation of the likelihood.

Figure 1(b) depicts the construction of the fidelity
map corresponding to p experiments and n re-
sponses (e.g., displacements, accelerations etc.) per
experiment. The fidelity map, constructed accu-
rately with a support vector machine classifier and
adaptive sampling (see Section 3), provides the re-
gion of the space where the relative discrepancy be-
tween model and experiments ∆fi is lower than 1%
for every response. This allows the update of the
model through maximum likelihood or Bayesian
update.

3 FIDELITY MAPS AND CONSTRUCTION
OF THE LIKELIHOOD

A fidelity map is defined as the region of the pa-
rameter space within which the responses belong
to a user-defined interval around the experimental
data:

FM = {(x, a) | ri(x, a) ≤ εi, i = 1, . . . , n} (1)

where:

ri(x, a) =

∣∣∣∣yi(x, a)− yexpi

yexpi

∣∣∣∣
Using the fidelity map, it can be shown (see Sec-
tion 3.3) that the likelihood can be efficiently ap-
proximated (cf. Figure 2).

3.1 SVM-based fidelity map

Fidelity maps are constructed using a support vec-
tor machine (SVM) classifier. An SVM defines
the boundaries between samples of two different
classes (e.g., feasible and infeasible) (Gunn 1998,
Vapnik 2000, Schölkopf & Smola 2002, Christian-
ini & Taylor 2000). In the context of fidelity maps,
SVM has the following advantages:

• Only one SVM decision function is needed ir-
respective of the number n of responses y;

• It is insensitive to discontinuities and can han-
dle binary responses (Basudhar, Missoum, &
Harrison Sanchez 2008);

• The boundaries can be highly nonlinear and
correspond to disjoint non-convex domains;



• The prediction of a class is very efficient, thus
allowing the use of Monte-Carlo type sam-
pling.

Given N training sample, the SVM classifier is ex-
pressed as:

s(x) = b+
N∑
k=1

λ(k)l(k)K(x(k),x) (2)

where x(k) is the kth training sample, λ(k) is the
corresponding Lagrange multiplier, l(k) is the label
(class) that can take values +1 or -1, K is a kernel
function (e.g. Gaussian in this work) and b is
the bias. The boundary is then defined as s(x) = 0.

In order to build the fidelity map, an SVM is
initially trained using a design of experiments
(DOE). The class of each sample is defined based
on the discrepancy between the model outputs
and the experimental measurements. To be feasi-
ble, a training sample must correspond to absolute
relative differences ri between the model outputs
yi and the measurements yexpi less than a given
threshold εi (i.e., issue outputs lying within a “con-
fidence region”). Therefore, the labels used to train
the SVM are defined as:

l(k) =

{
+1 if r

(k)
i ≤ εi, i = 1, . . . , n

−1 otherwise

where:

r
(k)
i =

∣∣∣∣∣y(k)i − y
exp
i

yexpi

∣∣∣∣∣
3.2 Map refinement and adaptive sampling

In order for the likelihood to be accurate, a small
enough ε is needed as well as an accurate bound-
ary.

3.2.1 Notion of most “feasible” sample
It might happen that in the initial DOE there
is not a single sample that satisfies the initial fi-
delity requirement imposed by the various (small)
εi. Therefore no feasible sample is available to con-
struct an SVM. In order to solve this issue, the
sample x(kc) with the minimum discrepancy over
all the responses is searched. The index kc of the
most “feasible sample” is:

kc = arg min
k

r(k)max (3)

where:

r(k)max = max
i

(
r
(k)
i − εi
εi

)

3.2.2 Adaptive sampling
In order to build an accurate SVM at affordable
cost, Basudhar and Missoum introduced an adap-
tive sampling scheme that is used in this work. As-
suming the existence of at least one point within
the fidelity map (c.f. Section 3.2.1), the SVM can
be refined using the following two types of sam-
ples (c.f. Basudhar & Missoum 2008, Basudhar &
Missoum 2010 for details):

A primary sample Also referred as “maxmin”
sample. This sample is defined as the point in
the space that maximizes the minimum dis-
tance to existing samples (i.e., sparse regions)
under the constraint that it lies on the SVM
boundary (i.e., s(x)=0).

A secondary sample is used to prevent a phe-
nomenon referred as “locking” of the SVM,
where adding primary samples only generates
small changes of the boundary. For this rea-
son, this sample is also referred to as “anti-
locking” sample.

The sampling schedule used in this work uses two
primary samples and one secondary sample per it-
eration (Basudhar & Missoum 2010). Algorithm 1,
summarizes the construction of the fidelity map.

Algorithm 1 Fidelity map. Adaptive Sampling.

Require: User define how small the fidelity map
must be by setting ε;

1: Sample the space ({X,A}) according to a
DOE of size np (here, CVT) : w(k) =
[x(k), a(k)];

2: Evaluate all samples : y(k) = y(w(k));
3: Define the scaled residual relative to each mea-

surements for all points : r
(k)
i =

∣∣∣∣yexpi −y(k)i

yexpi

∣∣∣∣;
4: For each point, define their “feasibility” :

r
(k)
max = maxi

(
r
(k)
i −εi
εi

)
;

5: Begin adaptive sampling:
6: for j = np + 1→ np + nadapt do ;
7: Set labels to -1: l(k) = −1, k = 1, . . . , j−1;

8: Define K =
{
k|r(k)max ≤ 0

}
;

9: if K = ∅ then;

10: Find kc = arg min
l

r
(l)
max;

11: Define K = {kc};
12: end if
13: Set l(k) = +1 ∀k ∈ K;
14: Build the SVM as explained in Section 3.1;
15: Add an adaptive sample w(j) as explain in

Section 3.2.2;

16: Compute : y(j), r(j), r
(j)
max;

17: end for



3.3 Likelihood approximation

This section shows how to relate the fidelity map to
the likelihood. It can be shown that as the εi tend
to zero, the likelihood can be obtained. This can
be proven, without loss of generality and for the
sake of simplicity, with x and yexp as two scalars.
The relation between a PDF and a CDF is given
as:

fY (x,A)(y
exp|x) =

dFY (x,A)

dy
(yexp|x)

Therefore:

fY (x,A)(y
exp|x) =

lim
ε→0

P[yexp − ε ≤ Y (x,A) ≤ yexp + ε|x]

2ε

The probability P[yexp− ε ≤ Y (x,A) ≤ yexp + ε|x]
is the probability of the responses to lie within
the user-defined intervals around the experimental
results knowing x. Follows the important result:

fY (x,A)(y
exp|x) ∝∼ P [(x,A) ∈ FM ] (4)

where ∝∼ stems for “approximately proportional
to”. This probability can be efficiently estimated
using Monte Carlo sampling over the aleatory vari-
ables. As ε tends to zero, this probability tends to
the likelihood value.

3.4 Estimation based on the approximated
likelihood

3.4.1 Maximum Likelihood Estimate
Once the fidelity map is constructed, maximum
likelihood estimates (MLE) (Xiong, Chen, Tsui, &
Apley 2009) can be obtained:

xMLE = argmax
x

fY(x,A)(y
exp|x) (5)

At this point it is essential to note that the
dependence between the responses is implicitly
accounted for.

As mentioned previously, this approach provides a
point estimate xest. In order to obtain a distribu-
tion of the estimated parameters and have a fully
stochastic approach, one can use the Bayesian ap-
proach.

3.4.2 Bayesian Estimate
Starting with the Bayes formula:

fA|BfB = fB|AfA

and specializing it to model update, we obtain:

fX(x|yexp) =
fY(x,A)(y

exp|x)fX(x)

fY(X,A)(yexp)
(6)

where fX(x|yexp) is the posterior distribution,
fY(x,A)(y

exp|x) is the likelihood, fX(x) is the prior
knowledge, and fY(X,A)(y

exp) is a normalizing con-
stant which represent the overall probability den-
sity to observe yexp. In order to sample the poste-
rior distribution, a Markov Chain Monte Carlo al-
gorithm such as the Metropolis-Hastings algorithm
(Metropolis, Rosenbluth, Rosenbluth, & Teller
1953, Hastings 1970) can be used to overcome the
difficulty of evaluating fY(X,A)(y

exp). Instead of an
MLE estimate, one can now use a Bayes estimator
defined as the expectation of the posterior distri-
bution:

xBayes
i = E [Xi|yexp] =

∫
xifX(x|yexp)dx (7)

In order to assess the refinement in the fidelity of
the model, in a statistical sense, using the posterior
in comparison to the prior, the following fidelity
index can be estimated:

FI =
P[(X,A) ∈ FM |yexp]

P[(X,A) ∈ FM ]
(8)

where P[(X,A) ∈ FM |yexp] (resp. P[(X,A) ∈
FM ]) is computed using the posterior distribution
fX(x|yexp) (resp. the prior distribution fX(x)).

4 RESULTS

The proposed methodology is applied to the
update of a finite element (FE) dynamic model
based on modal properties. Model parameter
estimation using natural frequencies and mode
shapes is a typical example where the number of
outputs y is rather high (Allemang 2002, Chen,
Duhamel, & Soize 2006, Marwala 2010, Gogu,
Haftka, Le Riche, Molimard, Vautrin, et al. 2010).

The test example used is a simple plate subjected
to uncertainty in the boundary conditions. We
wish to identify the Young’s modulus given a set
of natural frequencies and mode shapes. For com-
parison purposes, the results are performed along
with an approach based on a residual. It is also
compared to the product of the individual likeli-
hoods corresponding to the various responses (See
Appendix A). The product of likelihoods is used
in order to show the influence of correlated model
outputs.

4.1 Finite element Model updating based on
modal data

Traditional quantities used in model update using
modal properties are:

• Differences in natural frequencies values (e.g.,
Euclidean norm of difference). This quan-
tity is traditionally minimized in the form



Table 1: Parameters used for the plate example (S.I. units).

Deterministic To estimate Aleatory
Parameter a b ν ρ t E K

Value, Distribution 1 1.5 0.33 7800 0.01 N/A U(2× 105, 106)

of a residual through optimization. Various
weights can be assigned to the different fre-
quencies if more emphasis is to be given to
particular ones;

• Differences between the mode shapes. This is
typically measured using the Modal Assur-
ance Criterion (MAC) matrix (c.f. Eq. 9);

• Differences between the Frequency Response
Function (FRFs) measured using the FRAC
(Frequency Response Assurance Criterion);

• Mode orthogonality.

The “MAC” criterion (Allemang 2002, Marwala
2010) is by far the most widely used:

Mij =
(Φ∗Ti AΦexp,j)

2

(Φ∗Ti AΦi)(Φ∗Texp,jAΦexp,j)
(9)

where Φi is the ith computational mode shape and
“exp” stands for experimental. Φ∗Ti is the conju-
gate transpose of the mode shape. A is often the
identity matrix or the mass matrix. The MAC
value is equal to unity for a perfect match of
modes. It should be as close to zero as possible
for cross terms.

4.2 Simply supported plate

As an example, we consider a rectangular plate.
The plate is simply supported. In order to model
the uncertainties in the displacement boundary
conditions, one dimensional springs of stiffness K
are used for three sides of the plate (Figure 3). The
finite element model of the plate is constructed
with 80 shell elements. We wish to identify the
Young’s modulus E of the plate based on Nm = 4
first modes for a total of n = 14 responses. The
parameters are summarized in Table 1. In order
to define the “experiments”, the FE model is run
with E = Eact and K = Kact. The methodology
is repeated for 6 combinations of Eact and Kact

(see Table 2). All the configurations are run with
ε = 1% for all the responses.

4.3 Fidelity map and likelihoods

The fidelity map is constructed in the (E,K)
space with 15 Central Voronoi Tessellation (CVT)
samples. The boundary is then refined with 50
additional adaptive samples. For each value of E,
the probability of being within the fidelity map

a
b

E, ν, ρ, t

K

(a) Schematic repre-
sentation.

(b) FEM representa-
tion.

Figure 3: Schematic and Finite Element representation of
a simple plate. One side is simply supported while the oth-
ers are connected to the ground through springs, to model
uncertainties in the boundary conditions.

(i.e., the approximated likelihood noted LHmcs)
is calculated with 105 Monte Carlo samples
according to the distribution of K.

The proposed approach is compared to the re-
sults using the likelihood of the residual (LHres)
and the product of the likelihoods for the dif-
ferent responses LHprod (see Appendix A). These
likelihoods are constructed using Kernel Smooth-
ing (Bowman & Azzalini 1997) and Kriging
models(Sacks, Welch, Mitchell, & Wynn 1989,
Jones 2001, Forrester & Keane 2009, Basudhar,
Dribusch, Lacaze, & Missoum 2012) trained with
65 CVT samples. LHres uses a residual defined as
follows (Appendix A):

R =
Nm∑
i=1

[
(λi − λexpi )2

λexpi

+ (Mii − 1)2 +
Nm∑

j=i+1

Mij

]

The graphical results for 2 cases are depicted on
Figure 4. Graphical inspection of the likelihoods
show that LHmcs exhibits a higher robustness than
the two other methods for that example. The fail-
ure of the LHprod is natural since the different nat-
ural frequencies are strongly correlated, therefore,
the assumption of independence leads to incorrect
results. On the other hand, the inaccuracy of LHres

is not straightforward. A loose explanation stems
from the gathering of several responses that are
correlated with different spreads within one quan-
tity (similar to conclusion drawn in Gogu, Haftka,
Le Riche, Molimard, Vautrin, et al. 2010).

4.4 Maximum likelihood estimate

In the case where MLE is chosen for estimation,
the results for the six cases are summarized in Ta-
ble 2. As can be seen, the methodology is robust
for this example.
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Figure 4: Graphical results of the plate example, showing the fidelity maps and the estimated likelihoods, for Eact =
185× 109 Pa and Kact = 3× 105 N.m−1 (a and b) and Eact = 235× 109 Pa and Kact = 6× 105 N.m−1 (c and d).

Table 2: Summary of the 6 experimental configurations and Figures associated (S.I. units).

Eact 185× 109 235× 109

Kact 3× 105 6× 105 9× 105 3× 105 6× 105 9× 105

Figures 4(a) & 4(b) N\a N\a N\a 4(c) & 4(d) N\a

EMLE
est (Pa) 184.6× 109 182.3× 109 185.8× 109 232.4× 109 237.5× 109 235.4× 109

Error (%) 0.22 1.46 0.49 1.11 1.06 0.17

EBayes
est (Pa) 184.3× 109 185.02× 109 186.7× 109 233.9× 109 233.7× 109 235.5× 109

Error (%) 0.37 0.008 0.87 0.44 0.54 0.19



4.5 Bayesian update

In the case of Bayesian update, a wide prior,
reflecting a substantial lack of knowledge was
chosen. The prior is set with a mean value of 210
GPa and a standard deviation of 21 GPa. Fig-
ure 5(a) depicts the likelihood function, the prior
distribution and the actual value, for the first case
(Eact = 185× 109 Pa and Kact = 3× 105 N.m−1).
Figure 5(b) shows the corresponding posterior
distribution (Section 3.4.2). The Bayes estimators
for the 6 cases are shown in Table 2.

As an example of improvement brought by
the Bayesian update in comparison to MLE,
the fidelity index was computed for one case
(Eact = 185× 109 Pa and Kact = 3× 105 N.m−1).
A large value of 8.23 was obtained indicating that
the posterior distribution gives roughly 8 times
more chances to match the measurements.

In order to further gauge the benefits of the
Bayesian update, the posterior was propagated
to the first natural frequency (Figure 6(a)). For
comparison, the prior was also propagated (Fig-
ure 6(b)). In addition the ideal, unknown, response
distribution was computed (Figure 6(c)) using the
actual value of the Young’s modulus (Eact) along
with the propagation of the aleatory variables (i.e.
K). The distribution of the first natural frequency
clearly shows that the benefits of the Bayesian up-
date.
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Figure 5: Bayesian process applied to the first case (Eact =
185 × 109 Pa and Kact = 3 × 105 N.m−1) of the plate
example.

5 CONCLUSION

An approach to perform model update using
fidelity maps has been introduced. The construc-
tion of explicit fidelity maps using SVM in a
space with parameter to estimate and aleatory
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Figure 6: Propagations of the uncertainties applied to the
first natural frequency of the first configuration (Eact =
185 × 109 Pa and Kact = 3 × 105 N.m−1) of the plate
example.

uncertainties, allow one to efficiently approximate
the likelihood with Monte-Carlo simulations. In
order to obtain an accurate boundary and reduce
the number of model calls, an adaptive sampling
scheme is used. Because SVM is a classification
method, a large number of correlated model
outputs can be used. Finally, this approach do
not rely on any assumption, except a user define
vector of variables, ε.

The next steps of this research will study the scal-
ability of the approach in higher dimensions. In
addition, the approach will be tested on real world
problems with actual experiments.
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A PRODUCT OF THE LIKELIHOODS AND
RESIDUAL

For comparison with the proposed approach, this
appendix introduces two other methods to perform
a scalable likelihood computation. These two ap-
proaches are used in the result section 4.

A.1 Product of the likelihoods

If one assumes n responses to be independent (an
obviously wrong assumption!), the likelihood is the

product of the individual likelihoods:

xMLE = argmax
x

n∏
i=1

fYi(x,A)(y
exp
i |x) (10)

A.2 A Residual-based likelihood

A seemingly intuitive approach is to use a residual
that combines n responses into one quantity:

R(x, a) =
n∑

i=1

(
yexpi − yi(x, a)

yexpi

)2

(11)

A possible MLE then reads:

xMLE = argmax
x

fR(x,A)(0|x) (12)

It is noteworthy to mention that this method
does not compute exactly the likelihood as demon-
strated in the results section.
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