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ABSTRACT: This article presents a novel approach for Reliability-Based Design Optimization (RBDO)
using Kriging and Support Vector Machines (SVMs). The proposed algorithm is based on a sequential
two level scheme. The first stage consists of solving an approximated probabilistic optimization problem.
The objective function and the failure domains are approximated by Kriging and SVMs respectively.
The probability of failure and its sensitivity are estimated using subset simulation. The availability of
the sensitivity allows one to solve the subproblem using a gradient-based method. The second level
deals with the local refinement of the failure domains approximations around the first stage subproblem
solution. In the second stage, a key contribution of this work is the use of a novel probabilistic “max-
min” sample that refines the failure boundary based on the random variable distributions as well as
the locations of the samples. The proposed scheme is applied to three test cases including an analytical
example featuring a failure domain defined by 100 dummy failure modes and a crash-worthiness analysis
featuring 11 dimensions and 10 failure domains.

1 INTRODUCTION

Reliability-based design optimization (RBDO)
differs from deterministic optimization in the
sense that the objective and/or constraints are
probabilistic. As a consequence, the traditional
hurdle due to computationally intensive black
box models might be greatly amplified because
of the need to evaluate a probability of failure.
This difficulty is further increased when there are
a large number of nonlinear limit states.

In an effort to make RBDO suitable for engineer-
ing applications, several approaches have been
developed to tackle the reliability aspect. The
most popular ones are Reliability Index Approach
(RIA), Performance Measure Approach (PMA)
formulations (Tu, Choi, & Park 1999), and Se-
quential Optimization and Reliability Assessment
(SORA Du & Chen 2004). These methods are
based on first order reliability method (FORM)
which is based on the hypothesis that the limit
state is linear or weakly non-linear. Although such
assumptions might hold reasonably well for some
engineering applications, there are many cases
(e.g., system reliability or highly non-linear limit
states) where this will not be true and might lead
to unsafe designs.

In order to deal with system reliability or highly
non-linear limit states, sampling-based techniques
such as Monte-Carlo simulations are more appro-
priate. However the computational cost involved
in such process make it impractical.

Examples of solution strategies that have been
widely investigated to tackle this limitation
consists of using surrogates of the limit state such
as Kriging (Bichon, Mahadevan, & Eldred 2009)
or approximations of the failure domain using
a support vector machine (SVM) (Basudhar &
Missoum 2010). However the variability of the
sampling-based probability estimates and the
associated non-differentiability of the probabilis-
tic constraints make the use of gradient-based
optimization techniques impractical. Fortunately,
approximations of the sensitivities as a by-
product of most sampling-based techniques have
been derived (Song, Lu, & Qiao 2009, Lebrun &
Dutfoy 2009, Dubourg, Sudret, & Bourinet 2011).
In most cases, the surrogates or classifiers are
refined globally and used in a nested RBDO loop
using the aforementioned sensitivities (Dubourg,
Sudret, & Bourinet 2011). Another strategy uses
the sensitivities in a decoupled approach (Zou &
Mahadevan 2006).

The proposed work is based on the fact that the



approximation of the failure domain needs to be
accurate only in the surrounding of the actual
optimum. In this work, the optimum is searched
through a sequence of optimization subproblems
which minimize the approximation of the objective
function subjected to probabilistic constraints.
While the objective function is approximated
using Kriging, an SVM classifier is used to ap-
proximate the boundaries of the failure domain.
Following the solution of a subproblem, the SVM
approximation is refined using a dedicated adap-
tive sampling scheme around the current optimum.

The main features of the proposed algorithm are:

• Once the SVM is constructed, the probability
of failure is evaluated using Subset Simula-
tions (Au & Beck 2001);
• The solution of the subproblem is made possi-

ble because of the availability of the sensitiv-
ity of the probability of failure (Song, Lu, &
Qiao 2009) thus allowing the use of gradient-
based optimization techniques;
• The use of a classifier to approximate the fail-

ure domain allows one to treat problems with
discontinuities. In addition, only one SVM
might be needed per failure domain even if
it is defined through a large number of limit
states;
• The refinement of the failure domain approx-

imation is made through a new scheme that
simultaneously encompasses the distributions
of the variables as well as the location of the
samples.

The paper is structured as follows: Section 2.1 pro-
vides an overview of the main steps of the ap-
proach. Section 2.4 introduces the optimization
subproblem. Section 2.5 explains the local refine-
ment scheme to refine the boundary of the fail-
ure domain. Section 2.7 lists the various metrics
considered to monitor the convergence of the al-
gorithm. In the results section 3, the approach is
applied to three example: an analytical problem
featuring a failure domain made of 100 dummy

failure modes, a 6 dimensional study of a short col-
umn and a 11 dimensional crash-worthiness anal-
ysis featuring 10 domain of failures.

2 PROPOSED APPROACH

This article introduces a method to solve the fol-
lowing RBDO problem:
min
θ

F (θ) (1)

s.t. P[X ∈ ΩFi
] ≤ PTi

i = 1, . . . , nc

L ≤ θ ≤ U
where θ are the hyper-parameters (e.g., means) of
the distributions of the d random variables X, nc
is the number of probabilistic constraints, and L
and U are the lower and upper bound of θ respec-
tively. ΩFi

is a failure domain for a series or paral-
lel system (defined by a set of limit states gi,j) and
PTi

is the corresponding target probability. The al-
gorithm focuses on problems with a computation-
ally expensive objective function (F ) and nonlinear
limit states (potentially discontinuous and in large
number).

2.1 Summary of the approach
The proposed RBDO algorithm is based on a suc-
cession of subproblems constructed from approxi-
mations of the objective function and failure do-
main. The key aspect of the methodology is the
use of an adaptive sampling scheme to refine the
boundary of the failure domains involved in the
estimation of the probabilities of failure defined
in Eq. 1. The chart on Figure 1 provides a sum-
mary of the approach. The main features of the
algorithm are developed further in the subsequent
sections. The detailed algorithm is summarized in
Algorithm 1.

2.2 Choice of surrogates
In the case where the objective function is compu-
tationally expensive, the objective function F is
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Figure 1: Overview of the proposed RBDO algorithm.



replaced by a Kriging approximation (F̃ ) (Sacks,
Welch, Mitchell, & Wynn 1989, Jones 2001,
Forrester & Keane 2009, Basudhar, Dribusch,
Lacaze, & Missoum 2012).

The probabilistic constraints are treated by ap-
proximating the boundary of the failure domains.
This is done using a support vector machine
(SVM) classifier (Gunn 1998, Vapnik 2000,
Schölkopf & Smola 2002, Christianini & Taylor
2000). The choice of SVM stems from its ability to
handle discontinuous response and the possibility
of using one single SVM to approximate the
boundaries of a failure domain ΩFi

defined by
large number of limit states (gi,j) for series system.

Note that the approach is not dependent on Krig-
ing nor SVM. Any surrogate or classifier could be
used within the proposed scheme.

2.3 Probability of failure
In the case of highly nonlinear limit states, mo-
ment based reliability techniques such as FORM or
SORM are not suitable. Sampling techniques are
typically favored. Among such techniques, Subset
Simulations (Au & Beck 2001) have shown good
performances, and are used in this work. They
are particularly useful for small target probabili-
ties and also enable a reduction of the variance of
the probability estimate. Another possible choice
would be Multi-modal Adaptive Importance Sam-
pling (Zou & Mahadevan 2006).

2.4 Sub-problem definition
The probabilistic optimum at iteration k is found
by solving the following optimization problem:

θ(k)
new = arg min

θ
F̃ (k)(θ) (2)

s.t. P
[
X ∈ Ω̃(k)

Fi

]
≤ PTi

where Ω̃Fi
is the SVM-based approximation of the

failure domain ΩFi
. Due to the variance inherent to

sampling techniques, the probabilistic constraints
are noisy and non-differentiable numerically (Mis-
soum, Ramu, & Haftka 2007). However, it can be
shown that the sensitivities:
dPf
dθi

=
∫

x∈Ωf

dfx(x|θ)
dθi

dx

can be efficiently approximated as a by product of
sampling techniques (Song, Lu, & Qiao 2009, Le-
brun & Dutfoy 2009, Dubourg, Sudret, & Bourinet
2011). For example, if X ∼ N(θ, 1):

dPf
dθ = E [X|X ∈ Ωf ]

Based on the availability of the derivatives, sub-
problem defined in Eq. 3 can be solved using a gra-
dient based optimization technique such as SQP.

2.5 Refinement of the SVM

The refinement of the SVMs is ensured through the
use of a “probabilistic max-min” sample defined as:

θ
(k)
MMi

= arg max
x

φ(x|θ(k)
new) 1

ddnearest(x) (3)

s.t. x ∈ ∂Ω̃(k)
Fi

where:

dnearest(x) = min
i

(||x− x(i)||)

and x(i) are the samples already found, ∂Ω̃(k)
Fi

the
approximated boundary of the ith failure domain,
φ(x|θ(k)

new) is the d-dimensional standard normal
joint distribution with hyper-parameters θ(k)

new.

Note that the proposed formulation is an impor-
tant variation on the previous work by Basudhar &
Missoum who introduced a “max-min” search for
the refinement of SVMs which only considered spa-
tial distributions of the samples. In order to com-
pare both schemes, consider the following prob-
lem: within a hypercube of side 2a centered on the
origin, sequentially fill the space using samples as
defined by:

x = arg max
x

dnearest(x) (4)

s.t. a ≤ xi ≤ a ∀i

Figure 2(a) shows the pattern of such a max-min
filler in 2 dimensions. The authors claim that
regardless of the number of points and the di-
mension, the marginal distribution of the samples
along any axis is uniform between −a and a.

Consider now this other setup. Sequentially fill the
space using samples as defined by:

x = arg max
x

φ(x) 1
ddnearest(x) (5)

where φ is d-dimensional standard normal joint
probability density function. Figure 2(b) shows the
pattern of such a probabilistic max-min filler in
2 dimensions. The authors claim that regardless
to the number of points and the dimension, the
samples follows the joint distribution φ. At that
point, the authors have not been able to derive a
rigorous proof of that characteristic. However, this
was shown empirically up to 30 dimensions.
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Figure 2: Pattern in 2 dimension of two max-min filler.
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Figure 3: Probabilistic placement of point along the bound-
ary of a failure domain according to the joint defined by
θ

(k)
new.

2.6 Properties of the probabilistic max-min for
reliability assessment

Consider the probabilistic sample as defined
by Eq. 3. Figure 3 show the pattern of points
that would be obtained for a joint PDF with
hyper-parameters θ(k)

new. It is noteworthy that
the probabilistic samples enable the refinement
of the failure domain while following the joint
distribution φ(x|θ(k)

new). This refinement is made
possible by simultaneously forcing the samples to
be as far away as possible from each other.

Note that this approach is not restricted to normal
distributions as isoprobabilist transformations can
be used. In the case of correlated variables, Nataf
transformation (Nataf 1962) or copulas (Nelsen
2006) can be used.

2.7 Convergence metrics

The use of a surrogate for the objective function
and SVMs make the definition of a unique conver-
gence criterion rather tedious. In this work, the
following metrics are considered:

The overall convergence of the algorithm can be

monitored through soft and hard convergence cri-
teria:

Soft : ρS =

∣∣∣∣∣∣θ(k)
new − θ(k−1)

new

∣∣∣∣∣∣∣∣∣∣∣∣θ(k−1)
new

∣∣∣∣∣∣ ≤ εs (6)

Hard : ρH =
∣∣∣∣∣F (θ(k)

new)− F (θ(k−1)
new )

F (θ(k−1)
new )

∣∣∣∣∣ ≤ εs (7)

The convergence of the Kriging model is studied
using a trust-region metric which is the ratio of the
predicted improvement over the actual improve-
ment:

ρF = F̃ (k)(θ(k)
new)− F̃ (k)(θ(k−1)

new )
F (θ(k)

new)− F (θ(k−1)
new )

(8)

When ρF is positive, the surrogate exhibits the
proper trend (predicted a reduction and observed
a reduction). The closer from 1 this ratio is, the
better the surrogate is.

The convergence of the SVMs is observed using the
following ratio:

ρΩFi
=
∣∣∣∣∣βi,k+1 − βi,k

βi

∣∣∣∣∣ (9)

where:

βi,k = −Φ−1
(
P
[
X ∈ Ω̃(k)

Fi

])
, βi = −Φ−1 (PTi

)

The advantage of this quantity stems from its abil-
ity to quantify the relative change in probability
due to the update scheme. If this ratio tend to
zero and ρS is small, then the refinement scheme
do not improve the SVM anymore. Note that this
does not guarantee that the SVM converged to the
actual one but only that it is converged for the pro-
posed refinement scheme.

3 RESULTS

3.1 Multiple failure modes: Analytical example
This first example is a simple analytical problem
involving 100 dummy constraints. It is used to
show the possible advantage of using a single SVM
to represent a failure domain defined through a
large number of limit states. The RBDO problem
is defined as:

min
θ1, θ2

(
θ1

15 + 1
2

)2

+ sin
4
(
θ2

15 − 1
)2
 (10)

s.t. P[X ∈ ΩF1 ] ≤ 10−3

0 ≤ θ1 ≤ 40

−5 ≤ θ2 ≤ 35



Algorithm 1 RBDO algorithm
1: Compute an initial DOE of size m:

Y (d) = F (θ(d)), G(d)
i = gi(θ(d)) d = [1,m]

2: Build initial Kriging F̃ (m) and SVMs Ω̃(m)
Fi

;
3: k=m+1;
4: while Not Converged (Section 2.7) do
5: Find the current probabilistic optimum

(Section 2.4): θ(k)
new (Eq. 3);

6: Refine Ω̃Fi
, i = [1, nc] (Section 2.5) by

adding a probabilistic max-min: θ(k)
MMi

(Eq. 3);
7: Update:

1. F̃ (k) into F̃ (k+1) using θ(k)
new;

2. Ω̃(k)
Fi

into Ω̃(k+1)
Fi

using θ
(k)
MM ;

8: k=k+1;
9: end while

X1, θ1

X
2
,
θ 2
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Figure 4: Graphical representation an analytical example
featuring 100 dummy constraints.

where ΩF1 is bounded by 100 dummy lines that are
tangent to the parabola defined as:

−
(
x2

15 − 1
)2

+ x1

15 − 0.5 = 0

and Xi ∼ N(θi, 1). Figure 4 depicts the problem
graphically. The initial design of experiments is a
Central Voronoi Tessellation (CVT) DOE of 15
points. Each iteration adds one sample to refine
the approximation of ΩF1 and one sample for F .
The convergence is shown over 20 iterations in Fig-
ure 5 and the results are summarized in Table 1.

In order to assess the reduction in the number of
function evaluations using a single SVM, Figure 6
depicts the number of limit states that need to be
computed for each max-min sample. The 15 first
samples are from the initial DOE. In the case of a
safe sample the total number of limit states (100)

Table 1: Results for the 100 constraints analytical problem
at iteration 17

Optimum Actual? Error (%)
θ1 10.6623 10.6655 0.03
θ2 14.8952 15.0285 0.89
F 1.4663 1.4666 0.03
P ??
f 1.06× 10−3 10−3 6
β??? 3.07 3.09 0.65

? Obtained through a brute nested RBDO technique
?? Pf = P[X ∈ ΩF1 ], ??? β = −Φ (P[X ∈ ΩF1 ])
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Figure 6: Amount of failure modes gi,j evaluated per points.

must be evaluated. At iteration 17, beyond which
no further improvement is observed, 2311 limit
state function calls have been performed, whereas
3200 would have been required if all failure modes
were to be accounted for independently. The gain
is of 28%. This improvement was obtained with a
simple reordering of the limit states based on their
criticality.

3.2 6 dimensions: Short column
This problem consists in the minimization of
the weight of a short column with rectangular
cross section of height h and width b (Aoues &
Chateauneuf 2010). It is subjected to an axial load
F and two bending moments about the two axes
of inertia of the cross section. The design should
satisfy stress requirements such that:

1− 4M1

bh2fy
− 4M2

b2hfy
−
(

F

bhfy

)2

≤ 0

which defines ΩF1 based on the yield stress fy. The
random variables are listed in Table 2. There are
a total of six random variables, two of which have
their mean values θ1 and θ2 used as optimization
variables.
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Figure 5: Convergence of the proposed algorithm for the 100 constraints analytical example (left to right: design variables,
overall convergence, surrogates convergence).

The problem is defined as:

min
θ1, θ2

θ1θ2 (11)

s.t. P[X ∈ ΩF1 ] ≤ Φ(−3)

0 ≤ θ1, θ2 ≤ 1 1
2 ≤

θ1

θ2
≤ 2

An initial CVT DOE of 60 points is used. The
convergence of the algorithm over 70 iterations is
shown on Figure 7 and the results are summarized
in Table 3.

Table 2: Random variables for the short column problem

Variable Distribution Mean C.o.V. (%)
b (m) Normal θ1 10
h (m) Normal θ2 10
M1 (N.m) Normal 250× 103 30
M2 (N.m) Normal 125× 103 30
F (N) Normal 2.5× 106 20
fy (Pa) Normal 4× 107 10

Table 3: Results for the short column problem at iteration
60

Optimum Actual? Error (%)
θ1 0.3462 0.3586 3.44
θ2 0.6925 0.6710 3.2
F 0.2398 0.2406 0.08
P ??
f 1.07× 10−3 1.35× 10−3 20.7
β??? 3.06 3 2

? Obtained through a brute nested RBDO technique
?? Pf = P[X ∈ ΩF1 ], ??? β = −Φ (P[X ∈ ΩF1 ])

3.3 11 dimensional problems with multiple
failure domains: Crash-worthiness

This problem deals with the crash-worthiness anal-
ysis of a car subjected to a side impact. This
work uses the problem definition from Youn, Choi,
Yang, & Gu 2004, Thoomu 2010 where responses
surfaces have been obtained to approximate the
constraints and objective function. In this work,
these responses surfaces are used as black boxes.
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Figure 7: Graphical convergence representation of the proposed methodology for the short column example (left to right:
design variables, overall convergence, surrogates convergence).



Table 4: Random variables for the crash-worthiness problem

Variable Distribution Mean Std
xi, i = [1, . . . , 7] Normal θi 0.03
x8 Normal 0.345 0.006
x9 Normal 0.345 0.006
x10 Normal 0 10
x11 Normal 0 10

The problem is defined as follow:
min
θ

F (θ)

s.t. P[X ∈ ΩFi
] ≤ 0.1 i = 1, . . . , 10

0.5 ≤ θi ≤ 1.5 i = 1, . . . , 7
where F is the weight. Ten failure domains are in-
volved: two structural velocities, three deflection
along with a viscous criterion constraints on the
dummy chest and two forces on the dummy body
(Gu, Yang, Tho, Makowskit, Faruquet, & Y. Li
2001). The problem features 11 random variables
(Table 4). The means θi of the first seven variables
are used as optimization variables. An initial CVT
DOE of 60 points is used. Each iteration add one
samples to each ΩFi

(i.e., 10 samples total). Note
that for this problem, the objective function is not
approximated by Kriging. The convergence of the
algorithm over 200 iterations is depicted in Fig-
ure 8 and the results are summarized in Table 5.

At iteration 100, beyond which no further improve-
ment is observed, a total of 1060 (60+ 10 × 100)
function calls are required. In addition, Figure 9
shows the evolution of the actual probabilities of
failure. Most of the failure domains converge before
fifty iterations. Only four failure domains require
further refinement. In this work, the fact that some
failure domains converged early have not been used
to reduce the number of function calls.

Table 5: Results for the crash-worthiness problem at itera-
tion 100

Optimum Actual? Error (%)
θ1 0.5 0.5 0
θ2 1.31 1.31 0.12
θ3 0.5 0.5 0
θ4 1.31 1.32 0.22
θ5 0.67 0.68 1.17
θ6 1.5 1.5 0
θ7 0.5 0.5 0
F 24.51 24.53 1.91
P ??
f 0.105 0.1 5
β??? 1.25 1.28 2.4

? Obtained through a brute nested RBDO technique
?? Pf = max {P[X ∈ ΩFi

]},??? β = −Φ (max {P[X ∈ ΩFi
]})
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Figure 9: Evolution of the actual probabilities of failure
during the RBDO process for the crash-worthiness example.
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4 CONCLUSION

In this work, a new RBDO approach has been
introduced. The approaches hinges on the local re-
finement of a support vector machine classifier to
approximate the failure domain. This refinement is
performed through an adaptive sampling scheme
that locate samples based on the probabilistic and
spatial distributions of the variables and samples.
In addition, the probability of failure and its
sensitivity is estimated using Subset Simulation.
Three test cases were used to demonstrate the
efficiency of the proposed scheme. In particular, a
problem with 11 dimensions and 10 probabilistic
constraints was solved.

Future studies involve the testing of the adaptive
sampling scheme with different joint distributions.
In addition, the authors will investigate modifi-
cation of the algorithm (e.g., active set strategy)
to further reduce the computational burden. More
importantly, a variation will be studied to enable
the use of deterministic variables in the optimiza-
tion problem.
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