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ABSTRACT
This paper introduces a novel approach for reliability as-

sessment with dependent variables. In this work, the boundary of
the failure domain, for a computational problem with expensive
function evaluations, is approximated using a Support Vector
Machine and an adaptive sampling scheme. The approximation
is sequentially refined using a new adaptive sampling scheme re-
ferred to as generalized “max-min”. This technique efficiently
targets high probability density regions of the random space.
This is achieved by modifying an adaptive sampling scheme orig-
inally tailored for deterministic spaces (Explicit Space Design
Decomposition). In particular, the approach can handle any joint
probability density function, even if the variables are dependent.
In the latter case, the joint distribution might be obtained from
copula. In addition, uncertainty on the probability of failure es-
timate are estimated using bootstrapping. A bootstrapped co-
efficient of variation of the probability of failure is used as an
estimate of the true error to determine convergence. The pro-
posed method is then applied to analytical examples and a beam
bending reliability assessment using copulas.

1 Introduction
The calculation of probability of failure is often done us-

ing sampling techniques such as Monte-Carlo simulations, or
using approximations such as moment-based methods (FORM,
SORM) [1, 2]. It is now well known that the computational

cost associated with computer simulations as well as the poten-
tial complexity of the failure domain (e.g., nonlinearity of the
limit states) are major hurdles to an efficient calculation of prob-
abilities of failure. For this reason, surrogate-based methods,
whereby a limit state is approximated by surrogates such as Krig-
ing [3] or Support Vector Machines (SVM) [4], are often used
since these approximations are computationally efficient and en-
able the use of many Monte-Carlo samples. In order to tackle the
difficulties stemming from nonlinear limit-states, adaptive sam-
pling techniques have been developed for Kriging (e.g., Efficient
Global Reliability Assessment (EGRA) [5], AK-MCS [6]) as for
SVM (e.g., Explicit Design Space Decomposition(EDSD) [7],
2SMART [8]). Loosely presented, these approaches aim at refin-
ing the approximation of the limit states by locating and evaluat-
ing samples in regions where information is needed.

If major strides have been achieved in the areas of surro-
gates and adaptive sampling for reliability assessment, existing
approaches are still mostly limited in the important case of de-
pendent variables. Indeed, it was shown in [9] that it is essen-
tial to tailor adaptive sampling schemes for reliability assess-
ment when the variables are dependent. This stems from the fact
that the approximation of the failure domain must be accurate
in places where the probability densities are the highest. This
can only be obtained if the adaptive sampling scheme includes
information on the joint distribution of the variables.

We propose to extend the original EDSD sampling scheme
to the case of dependent variables. The original scheme used
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a “max-min” sample whose purpose was to populate sparse re-
gions while updating an SVM approximation of the failure do-
main [7, 10]. This was done by locating the sample on the ap-
proximated domain boundary. However, this sampling scheme
did not include any information on the distributions of random
variables. This work generalizes the “max-min” sample by in-
cluding the joint probability density functions. This generalized
“max-min” has proven to be beneficial in the case of independent
variables of any distribution [11]. In this paper, we investigate its
use in the case of correlated variables. It is shown that only the
joint probability density function needs to be known. An exam-
ples is shown for an analytical joint probabilistic density function
and an example shows the derivations for use of copulas [12].

This paper is structured as follows. Section 2 presents the
generalization of the “max-min” sample for independent vari-
ables along with its key features. Section 3 further extends the
formulation to dependent variables, either with known joint PDF
or using copulas. Section 4 briefly describes an additional feature
using bootstrapping to assess the error on the estimated proba-
bility of failure due to SVM approximation. Section 5 presents
results for an analytical example and a simple mechanical exam-
ple.

2 Generalized “max-min”
This section introduces the key elements of the proposed ap-

proach: a new distance-based adaptive sampling scheme able to
account for the joint distribution of the random variables. For the
sake of simplicity, it is first introduced for independent variables.
It is subsequently extended to the case of dependent variables.

2.1 Classic “max-min”
The generalized “max-min” is an extension of a previous

adaptive sampling scheme referred to as “Explicit Design Space
Decomposition” (EDSD) [7,10]. In its most basic form, the sam-
ple is based on the identification of a point in the space that max-
imizes the distance to its closest neighbor while lying on the cur-
rent approximation of the limit state:

xmm = argmax
x

min
j=1,...,Ns

∣∣∣∣∣∣x−x( j)
∣∣∣∣∣∣ (1)

s.t. s(k)(x) = 0
li ≤ xi ≤ ui

i = 1, . . . ,n

where Ns is the number of existing samples, li and ui are the lower
and upper bounds for the ith random variable. s(k) is the SVM
approximation at iteration k (used in EDSD as approximation
of the limit state). Figure 1(a) shows the distribution of such
adaptive samples along a given limit state.

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

(a) Classic “max-min”

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

(b) Generalized “max-min”

FIGURE 1. Distribution of classic and generalized “max-min” sam-
ples along a given limit state with independent normal random variables.

Because EDSD was developed for deterministic spaces, it
does not take into account the probabilistic definition of the prob-
lem. More specifically, the distribution of samples shown on
Figure 1(a) would remain the same regardless of the stochastic
model. This leads to scalability problems and waste of function
calls during the adaptive sampling process. This is due to the
fact that a sample that maximizes the distance to its neighbors
in low probabilistic content regions does not bring much infor-
mation for estimating the probability of failure. In this work, we
propose a generalization of this sample that takes advantage of
the probabilistic definition of the problem.

2.2 Generalization to account for arbitrary joint PDF
In order to tackle the aforementioned hurdles, the “max-

min” problem is reformulated as:

xgmm = argmax
x

n
√

fX(x) min
j=1,...,Ns

∣∣∣∣∣∣x−x( j)
∣∣∣∣∣∣ (2)

s.t. s(x) = 0

This formulation weights the Euclidean distance with prob-
abilistic information. Hence, the density of adaptive samples
is higher in regions that are statistically important. Note that
there are no more side constraints in this definition. This comes
from the fact that the information about the domain is embedded
within the joint PDF fX. Figure 1(b) shows the distribution of
such adaptive samples along a given limit state.

The key argument behind this formulation is that adaptive
samples drawn from:

max
x

n
√

fX(x) min
j=1,...,Ns

∣∣∣∣∣∣x−x( j)
∣∣∣∣∣∣ (3)

will actually follow the distribution fX. A proof of concept of the
ability of the proposed formulation to actually follow the joint
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(a) Classic “max-min”
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FIGURE 3. Distribution of classic and generalized “max-min” sam-
ples along a given limit state with correlated normal random variables.

distribution fX is proposed using numerical experiments of up
to 30 dimensions in the case of a joint normal PDF. This was
done both graphically (Figure 2) and numerically by means of
a Kolmogorov-Smirnov test at the 5% significance level. This
approach has shown promising results for reliability assessment
using independent random variables [11].

3 The case of dependent variables
As introduced in the previous section, the generalized “max-

min” works with any arbitrary joint PDF, without any assump-
tions of independence. Hence, as long as dependent joint PDFs
can be provided, the proposed approach can be used.

3.1 Known joint PDF
If an analytical joint PDF is known for the given problem,

the formulation of the generalized max-min can be used in a
straightforward manner. An example of correlated normally dis-
tributed variables is provided in Figure 3.

Unfortunately, only few analytical dependent joint PDFs ex-
ist. In most real world scenarios, it is unlikely that one would
be able to fit a joint distribution accurately. However, rather re-
cently, copulas have become an attractive tool to model depen-
dency and obtain an approximation of a joint distribution.

3.2 Use of copulas
Copulas [12] have received a large amount of attention in the

past years in fields such as economics [13], biostatistics [14], hy-
drology [15], as well as engineering design [16]. The theoretical
foundation comes from the Sklar’s theorem [17]. It essentially
states that for any joint CDF FX, there exists a unique copula C
such that:

FX(x1, . . . ,xn) =C(FX1(x1), . . . ,FXn(xn)) (4)

where FXi is the ith marginal CDF. The joint PDF function is
defined as:

fX(x1, . . . ,xn) =
dnFX(x1, . . . ,xn)

dx1 . . .dxn
(5)

=
n

∏
i=1

fXi(xi)
dnC(ν1, . . . ,νn)

dν1 . . .dνn

∣∣∣∣
ν j=FX j (x j)

(6)

Maybe the most widely used families of copulas are referred
to as elliptical or Archimedean. As long as one is able to com-
pute the copula, the PDF can be obtained numerically through
successive finite differences. In the case of elliptical copulas, the
derivation of the joint PDF can be carried out analytically. For
example, consider a Gaussian copula defined as:

C(ν1, . . . ,νn) = ΦR(Φ
−1(ν1), . . . ,Φ

−1(νn)) (7)

where R is a correlation matrix. By carrying out the derivation,
we obtain:

fX(x1, . . . ,xn) =
n

∏
i=1

[
fXi(xi)

φ (Φ−1 (νi))

]
φ R
(
Φ

−1 (νi)
)

(8)

where νi = FXi(xi). This process is illustrated on Figure 4.

4 Estimation of the probability of failure
Recall that the proposed approach is an iterative process, for

which at each iteration k, a new SVM is constructed and then
refined by the addition of a generalized “max-min” sample. At
iteration k, the probability of failure is estimated using Monte
Carlo simulations such that:

P(k)
f = E

[
I
[
s(k)(x)≤ 0

]]
(9)

106 Monte Carlo samples are used so that the error is min-
imal. However, the error on the estimated probability of failure
due to the SVM approximation of the failure domain should not
be ignored. In order to account for it, bootstrapping [18] is used.
This is achieved by bootstrapping the training samples and ob-
taining a new SVM for each bootstrap. More specifically, at it-
eration k, let x(k) = [x(1), . . . ,x(Ns)] be the training samples set.
A bootstrap training set x(k, j) is obtained, a new SVM s(k, j)(x)
is constructed on this new training set and a new probability of
failure P(k, j)

f = E
[
I
[
s(k, j)(x)≤ 0

]]
is estimated. This process is

repeated nbs times (i.e., j = [1, . . . ,nbs]). Based on the bootstrap
sample of the probability of failure P(k,?)

f = [P(k,1)
f , . . . ,P(k,nbs)

f ],
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FIGURE 2. Graphical proof of concept of the ability of the generalized formulation to follow a given joint distribution. Empirical marginal CDFs
FXi compared to standard normal CDF Φ (red thick dotted line) for 2, 10, and 30 dimensions based on 400 generalized max-min samples.
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FIGURE 4. Graphical illustration of the derivation of the joint PDF for a Gaussian copula.

an empirical confidence interval can be derived. In addition, the
median of the repetition P(k,?)

f is used as the estimated proba-

bility for iteration k. Finally, the coefficient of variation cv(k)bs of

P(k,?)
f is used as an estimate of the error due to SVM. In this work

nbs = 200 repetitions and a 95% confidence interval are used.

5 Results

The proposed approach is applied to an analytical example
and a cantilever beam. For the sake of comparison, the results us-
ing the generalized “max-min” are compared to results using the
classic “max-min” sample. In addition, to motivate the idea of
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FIGURE 5. Probability density function and limit state for the demon-
strative example.

using the coefficient of variation cv(k)bs of the bootstrapped P(k,?)
f

as an estimate of the error, it is compared to the true absolute
relative error defined as:

ε
(k) = 100×

∣∣∣Pf −P(k)
f

∣∣∣
Pf

(10)

5.1 Demonstrative example: Two dimensional corre-
lated Gaussian variables

The first example used in this paper features a complex 2D
limit state defined as:

6× sgn(x1)

x1
− x2 × sgn(x2)≤ 0 (11)

where sgn is the sign or signum function. For this example, the
random variables X1 and X2 follow a Gaussian correlated joint
PDF with ρ = 0.7. Figure 5 provides an overview of the stochas-
tic space along with the true limit state.

Figure 6 shows the convergence of the estimated probability
of failure for the two different schemes. Figure 7 shows the evo-
lution of the true error ε along with the bootstrapped coefficient
of variation cvbs when generalized “max-min” samples are used
for the refinement scheme. In addition, Table 1 reports values of
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95% CI
Generalized “max-min”
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FIGURE 6. Convergence of the estimated probability of failure us-
ing two adaptive sampling schemes, classic or generalized “max-min”
sample for the demonstrative example.

the estimated probability of failure at iterations 30, 60, and 100.
As a reference, the confidence interval of the Monte Carlo sim-
ulation itself on the true limit state is provided. It can clearly be
seen that using the generalized “max-min” drastically improves
the convergence of the algorithm in addition to the coefficient
of variation. When the generalized “max-min” sample is used, a
coefficient of variation below 10% is first achieved at iteration 28
and below 5% at iteration 45. The actual errors made on the es-
timated probability of failure at these iterations are respectively
1.1% and 0.9%.

5.2 Cantilever Beam: Three dimensional example us-
ing copula

1.5− PL3

3EI
≤ 0 (12)

The marginal distributions of b, h and P are shown in Ta-
ble 2. The copula for this problem is a Gaussian with ρ12 =
ρ13 = ρ23 = 0.7. A scatter plot of the projected dependent joint
PDF is provided on Figure 9.

Figure 10 shows the convergence of the estimated probabil-
ity of failure for the two different schemes. Figure 11 shows the
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TABLE 1. Estimated probability of failure (i.e., 0.5 quantile) and associated 95% CI at iteration 30, 60 and 100 for both scheme using either classic
or generalized “max-min” for the demonstrative example.

Quantile Classic Generalized Monte Carlo

30 60 100 30 60 100 106 samples

0.025 0.0029 0.0044 0.0055 0.0064 0.0070 0.0070 0.0070?

0.5 0.0062 0.0068 0.0071 0.0072 0.0072 0.0072 0.0072?

0.975 0.0112 0.0092 0.0088 0.0087 0.0079 0.0076 0.0074?

cvbs (%) 31.90 16.83 11.52 8.49 3.38 1.83 1.2??

ε (%) 14.37 4.95 1.92 0.08 0.40 0.65

? Obtained using 200 independent Monte Carlo simulation

?? Obtained using (??)
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FIGURE 9. Scatter plot of the dependent joint distributions for the cantilever beam.

TABLE 2. Marginal distribution of the parameters for the cantilever
beam.

Parameter Distribution

b (mm) lnN (m = 2.0491,v = 0.2462)

h (mm) Γ(α = 53,β = 0.33)

P (N) Weibull(a = 100,b = 10)

evolution of the true error ε along with the bootstrapped coeffi-
cient of variation cvbs when generalized “max-min” samples are
used for the refinement scheme. In addition, Table 3 reports val-
ues of the estimated probability of failure at iterations 30, 60 and
100. For reference, the confidence interval of the Monte Carlo
simulation itself on the true limit state is provided. Once again, a
faster convergence is observed when the generalized “max-min”
sample is used. When the generalized “max-min” sample is used,
a coefficient of variation below 10% is first achieved at iteration

34 and below 5% at iteration 39. The actual errors made on the
estimated probability of failure at these iterations are respectively
4.1% and 5.3%.

6 Conclusion

In this paper, a novel adaptive sampling scheme for reliabil-
ity assessment with any PDF, including dependent ones, was in-
troduced. Promising results have been shown on two test cases.
In addition, a bootstrapping-based confidence interval was de-
rived for the estimated probability of failure, in order to account
for the error due to the SVM approximation.

The main focus of future work will be to derive a formal con-
vergence criterion and investigate some possible tighter bounds
for the confidence interval.
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TABLE 3. Estimated probability of failure (i.e., 0.5 quantile) and associated 95% CI at iteration 30, 60 and 100 for both schemes using either classic
or generalized “max-min” for the cantilever beam.

Quantile Classic Generalized Monte Carlo

30 60 100 30 60 100 106 samples

0.025 0.0001 0.0018 0.0027 0.0025 0.0029 0.0030 0.0030?

0.5 0.0018 0.0036 0.0032 0.0029 0.0030 0.0031 0.0031?

0.975 0.0266 0.0086 0.0037 0.0045 0.0031 0.0031 0.0032?

cvbs (%) 428.86 44.89 11.59 21.67 1.89 1.09 1.8??

ε (%) 40.52 18.75 5.84 2.31 0.63 2.06

? Obtained using 200 independent Monte Carlo simulation

?? Obtained using (??)
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FIGURE 7. Evolution of the true error ε along with the bootstrapped
coefficient of variation cvbs for the generalized “max-min” scheme for
the demonstrative example.
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FIGURE 8. Description of the cantilever beam.
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FIGURE 10. Convergence of the estimated probability of failure us-
ing two adaptive sampling schemes, classic or generalized “max-min”
sample for the cantilever beam.
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