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Abstract

Purpose – The purpose of this paper is to present a study of the parallelization of the construction of
explicit constraints or limit-state functions using support vector machines. These explicit boundaries
have proven to be beneficial for design optimization and reliability assessment, especially for problems
with large computational times, discontinuities, or binary outputs. In addition to the study of the
parallelization, the objective of this article is also to provide an approach to select the number of
processors.

Design/methodology/approach – This article investigates the parallelization in two ways. First,
the efficiency of the parallelization is assessed by comparing, over several runs, the number of
iterations needed to create an accurate boundary to the number of iterations associated with a
theoretical “linear” speedup. Second, by studying these differences, an “appropriate” range of parallel
processors can be inferred.

Findings – The parallelization of the construction of explicit boundaries can lead to a markedly
reduced computational burden. The study provides an approach to select the number of processors for
an optimal use of computational resources.

Originality/value – The construction of explicit boundaries for design optimization and reliability
assessment is designed to alleviate many hurdles in these areas. The parallelization of the construction
of the boundaries is a much needed study to reinforce the efficacy and efficiency of this approach.

Keywords Explicit design space decomposition, Support vector machines, Parallel processing,
Optimum design, Reliability management

Paper type Research paper

1. Introduction
Simulation-based design optimization or reliability assessment is often hampered by the
large computational time associated with complex models. In addition, these models
often exhibit nonlinear behaviors thus further hampering the computational design
process. In particular, the discontinuity of the system responses is a major hurdle.
Similarly, binary responses (pass or fail), represent another challenge. Approximation
techniques based on surrogates (Mack et al., 2007; Simpson et al., 2001, 2004; Wang and

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0264-4401.htm

This research was supported in part by the National Science Foundation (award CMMI-1029257).
The authors are also thankful to Mr Peng Jiang for his constructive remarks.

EC
30,1

132

Received 31 August 2011
Revised 16 March 2012
Accepted 22 March 2012

Engineering Computations:
International Journal for
Computer-Aided Engineering and
Software
Vol. 30 No. 1, 2013
pp. 132-148
q Emerald Group Publishing Limited
0264-4401
DOI 10.1108/02644401311286099



Shan, 2007), such as response surfaces (Myers et al., 2009; Roux et al., 1998) or Kriging
(Wang and Shan, 2007; Jin et al., 2001) are often used in computational design to reduce
the computational cost. However, these techniques might fail in the cases of
discontinuous and binary responses.

For these reasons, a method referred to as explicit design space decomposition
(EDSD) (Missoum et al., 2007) was developed whereby the boundaries of the failure
domain are constructed explicitly. The main feature of EDSD stems from the fact that
the explicit boundaries are constructed based on the classification of responses but not
their approximation. Therefore, this procedure removes the hurdles due to
discontinuities and binary system outputs in approximation-based approaches. It
was found that the most flexible tool to construct the explicit boundaries was support
vector machines (SVMs) (Vapnik, 1998; Basudhar et al., 2008). In addition, an adaptive
sampling strategy was developed to create accurate explicit boundaries (Basudhar and
Missoum, 2010). It was further realized that besides the handling of discontinuous and
binary problems, the EDSD approach could tackle a large number of constraints or
failure modes (Arenbeck et al., 2010). It also provides a framework for the calculation of
probabilities of failure and reliability-based design optimization (Arenbeck et al., 2010;
Dribusch et al., 2009; Layman et al., 2010).

However, the exisiting EDSD studies based on adaptive sampling are serial in
nature (Arenbeck et al., 2010; Basudhar and Missoum, 2008; Dribusch et al., 2009;
Layman et al., 2010). In other words, the approximated explicit boundary is updated
after the addition of a new sample. The main objective of this article is to study the
efficiency of a parallel implementation of the adaptive sampling scheme.

The study is performed by monitoring the number of iterations needed to reach a
given accuracy of the explicit boundary as a function of the number of processors. The
number of iterations is compared to the ideal case whereby a twofold increase in the
number of processors would lead to a twofold decrease in the number of iterations. Based
on this ideal case and a given efficiency of the parallel implementation, this article
provides an approach to select an “appropriate” range for the number of parallel
processors needed without necessarily using all the available processors. It is essential for
the reader to note that in an actual design problem with expensive simulations (e.g. a finite
element model), the number of iterations is the most important efficiency metric.

The paper is organized as follows. Section 2 provides a background on EDSD,
SVMs, and the adaptive sampling strategy. Section 3 presents the proposed parallel
implementation and a derivation for the number of processors needed. To illustrate the
method, numerical experiments on analytical problems with 3D to 7D are provided in
Section 4. An example involving the buckling of a rectangular thin plate is also
presented. Finally, Section 5 provides a few conclusions on this study.

2. EDSD and adaptive sampling strategy
2.1 Explicit design space decomposition
EDSD was originally proposed to deal with the optimization and reliability assessment
of systems exhibiting highly nonlinear behaviors (Missoum et al., 2007). More
specifically, the approach was introduced to deal with well-known hurdles such as
nonlinear limit-state functions or constraints, discontinuous responses, and disjoint
failure regions. The basic premise of EDSD is to construct an explicit approximation of
the failure domain using a classification technique as opposed to the traditional
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approximation approach. The explicit boundary is constructed by using SVMs
(Vapnik, 1998; Basudhar and Missoum, 2010). The basic steps of EDSD are:

(1) Performing a design of experiments (DOE) to sample the design space. The
initial number of samples is usually small. In order to avoid lack or redundancy
of information in certain regions of the design space, the choice of DOE requires
the samples to be distributed as uniformly as possible. For this purpose, the
centroidal Voronoi tesselation (CVT) proposed by Burkardt et al. (2002) is of
particular interest.

(2) Response evaluation of the system for each DOE sample. For example, the
responses may be evaluated using finite element analysis.

(3) Classification of the responses as safe or failure (two classes). Note that for
discontinuous responses, a clustering technique needs to be used (Missoum et al.,
2007; Basudhar et al., 2008).

(4) Based on the classification information, an explicit boundary delimiting the
failure region is constructed using SVMs.

2.2 Support vector machines
2.2.1 Linear decision function. Consider a d-dimensional space and a training set of N
samples xi with class yi ¼ ^1. In the case of linear decision functions, the decision
hyperplane is defined by w ·x þ b ¼ 0, where w is the normal vector of the hyperplane
and b is the bias. We also define a pair of “support” hyperplanes, whose equations are
w ·x þ b ¼ 1 and w ·x þ b ¼ 21. The distance between the “support” hyperplanes is
2/kwk.

The optimal separating hyperplane is found by solving an optimization problem
which maximizes the geometric margin while ensuring that no point lies between the
two “support” hyperplanes. The optimization problem is:

w;b
min 1

2 kwk
2

s:t: yiðw ·x i þ bÞ $ 0 1 # i # N
ð1Þ

Equation (1) is a convex quadratic programming problem which can be efficiently
solved with available optimization packages. As a result, the optimal w, b, and the
Lagrange multipliers li at the optimum are obtained. Then, the SVMs decision
function can be expressed as:

sðxÞ ¼ bþ
XN
i¼1

liyixi ·x ð2Þ

2.2.2 Nonlinear decision function. In order to deal with the case where the data cannot
be separated by a linear boundary, SVMs are extended to the nonlinear case by
mapping the input space into a higher dimensional space, referred to as the feature
space where the data are linearly separable.

In the feature space, the new components of a sample x are given by (f1(x),
f2(x), . . . , fn(x)), where fi is the feature. The nonlinear decision function is obtained
by reformulating the linear classification problem which can be rewritten as:
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sðxÞ ¼ bþ
XN
i¼1

l i yiKðxi;xÞ ð3Þ

where K(xi, x) ¼ kF(xi),F(x)l is the kernel and k · l is the inner product.
The most commonly used kernel functions are the polynomial kernel and the

Gaussian kernel (Basudhar and Missoum, 2008). The polynomial kernel is defined as
Kðxi;xÞ ¼ ðkxi;xlþ 1Þp, where p is the degree of the kernel. The Gaussian kernel is
defined as:

Kðxi;xÞ ¼ exp
2kxi 2 xk

2

2s 2

 !
;

where s is the width parameter. In this article, the polynomial kernel was adopted.

2.3 Adaptive sampling strategy
Because of the inaccuracy of the initial SVM boundary, an adaptive sampling strategy
is used to refine the boundary with a reasonable number of samples. In its basic form,
the scheme proposed by Basudhar and Missoum (2010) selects samples located in
sparse regions with the highest probability of misclassification by the SVM boundary.
Practically, this is implemented by locating the samples on the SVM boundary at
maximum minimum distance to existing samples. The corresponding optimization
problem is:

x
max kx2 xnearestk

s:t: sðxÞ ¼ 0
ð4Þ

where xnearest is the nearest (i.e minimum distance) training sample. It is a global
nonlinear optimization problem which can be efficiently solved by the global
optimization algorithm, such as genetic algorithm (GA) (Basudhar and Missoum,
2008).

2.4 Error criterion
In order to evaluate the error between the approximated and the actual boundary, two
distinct error metrics are introduced as described in the following paragraphs. Note
that the actual boundary is not known in practical applications. However, these metrics
will allow us to perform the study of the parallel implementation and draw the
corresponding conclusions.

2.4.1 Error based on a test data set. Based on a set of Ntest points xtest with actual
(known) labels ytest, the error can be calculated as a misclassification fraction:

Error ¼
num ðsðxtestÞytest # 0Þ

N test
ð5Þ

This error metric is intuitive, easy to calculate, and general for all the problems
(Basudhar et al., 2008; Basudhar and Missoum, 2008; Hamel and Ebrary, 2009).

2.4.2 Error based on the polynomial coefficients. Basudhar and Missoum (2010)
proposed an error measure based on the polynomial kernel. This error measure, used in
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this article, is based on the fact that two polynomials are equal if and only if their
coefficients are equal.

For a d-dimensional problem and a polynomial kernel of degree p, the number of

coefficients is
�
d þ p

�
p

. In order to find the coefficients, a set of
�
d þ p

�
p

. CVT samples

are generated. The coefficients are found using the following equation:

b ¼ Q21s ð6Þ

where s is the array of SVM values for the CVT samples. The ith row of the coefficient
matrix Q is given as:

R i ¼ 1 x1 x2 . . . xd . . . x p
1 ðx p21

1 x2Þ . . . x p
d

� �
jxi

ð7Þ

The polynomial error 1k is given as:

1k ¼
kb ðactÞ 2 b ðkÞk

kb ðactÞk
ð8Þ

where, b (act) is the vector of polynomial coefficients for the actual boundary. b (k) is the
vector of the polynomial coefficients at iteration k. Convergence of the approximated
boundary is obtained when 1k # 10.

3. Parallel implementation
In this section, we propose a parallel implementation of EDSD and an approach to
select the number of parallel processors.

3.1 Parallel implementation of EDSD
The proposed parallel EDSD scheme is based on the premise that the SVM boundary is
updated after a given number of adaptive samples, referred to as “max-min” samples,
have been selected. In order to obtain the actual class of these samples (safe or not), the
corresponding responses (e.g. from a finite element code) are evaluated in parallel.

Note that, because of the need to calculate distances between samples, the
positioning of the adaptive samples cannot be performed strictly in parallel. In other
words, one sample requires the knowledge of the position of all the samples. However,
the calculation of the positions of the samples is computationally light and can be
considered as “overhead” compared to the function evaluation required for each sample
to determine its class.

3.2 Efficiency metric
The efficiency of the parallel implementation of EDSD is calculated based on
the number of iterations required to converge to an accurate explicit boundary. The
number of iterations is compared to an ideal speedup (Dhillon and Modha, 2000). The
variations between the actual experiments and the ideal cases will then be used to
predict the number of processors needed for the parallel implementation. The following
notations will be used:

. P is the number of processors.

. 1k is the polynomial error associated with the SVM boundary.
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. N1 is the number of iterations for convergence using serial EDSD.

. Niter is the general term of the number of iterations to convergence using the
parallel EDSD scheme.

. Ntheory
P and NP are the ideal and the experimental number of iterations for

convergence on P processors, respectively.
. NTinitial is the initial training set size.

3.2.1 Iteration-based speedup. The speedup, SP, is traditionally defined as the ratio of
the execution time for the problem using one processor (serial) to the execution time for
the same problem based on P processors (Dhillon and Modha, 2000; Xavier and
Lyengar, 1998). However, for an actual design problem with expensive simulations
(e.g. a finite element model), the number of iterations, is a more practical metric to
compare algorithms in the field of design optimization or reliability assessment.

The speedup is now reformulated in terms of the number of iterations. It is defined
as the ratio of the number of iterations to convergence for the serial implementation to
the number of iterations to convergence for the parallel implementation using P
processors:

SP ¼
N 1

Niter

ð9Þ

where, N1 and Niter are the numbers of iterations to convergence for the serial
implementation (i.e. one processor) and for the parallel implementation, respectively.

Theoretically, when SP ¼ P, the number of iterations will decrease P times if the
number of processors is multiplied by P times. Therefore, the theoretical speedup is
linear. Figure 1(a) shows the linear speedup, where P ¼ 1,2,3,4, . . . , 20.

Note that in our article, the efficiency is quantified through the speedup. It is
therefore different from the conventional “parallel efficiency” defined as the ratio of the
speedup to the number of processors. This quantity provides the speedup per
processor and is therefore equal to unity in the ideal case. However, in our study, the
speedup and its inverse are used to provide a mean to compare the parallel and the

Figure 1.
Linear speedup and the
inverse of the speedup
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serial implementations as well as a way to select the number of processors. The latter
aspect is described in the following section.

3.2.2 The “optimal” number of processors needed. We now turn to the definition of
the “optimal” number of processors needed for the parallel implementation. Of course,
the word “optimal” is not entirely appropriate as the maximum number of available
processors will always provide the largest reduction in computational time. Rather, we
are looking for the number of processors beyond which there is only a minor change in
efficiency of the parallel implementation. For this purpose, we examine the inverse of
the speedup as shown in Figure 1(b), where P ¼ 1, 2, 3, 4, . . . , 20. In our approach, the
number of processors needed is based on the “slope” of the curve (i.e. the sensitivity),
which is evaluated by the following equation:

d

dP

Niter

N 1

� �
<

Ntheory
Pþ1

� �
=N 1

� �
2 Ntheory

P

� �
=N 1

� �
ðP þ 1Þ2 P

¼
ððN 1=ðP þ 1ÞÞ=N 1Þ2 ððN 1=PÞ=N 1Þ

1
¼ 2

1

PðP þ 1Þ

ð10Þ

The number of processors needed is predicted by calculating the ratio of the sensitivity
of the number of iterations for P processors to the sensitivity from one to two
processors. This ratio is referred to as the relative iteration reduction factor (RIRF) and
is defined as:

RIRF ¼
ðd=dPÞðNiter=N 1Þ

d=dPððNiter=N 1ÞjP¼1Þ
¼

2

PðP þ 1Þ
ð11Þ

The “optimal” number of processors needed is obtained based on an arbitrary, user
selected, value h, so that:

2

PðP þ 1Þ
# h ð12Þ

h represents how the inverse of the speedup “flattens”, as shown in Figure 1(b). The
“optimal” number of processors needed is then:

P* ¼ d
21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8 þ hÞ=h

p
2

e ð13Þ

where d and e signify “round up” to the nearest integer.
3.2.3 Correction factor a. As mentioned above, P* is obtained based on the

assumption of an ideal speedup. However, in general, the number of iterations needed
for convergence will be larger. Therefore, the number of required processors
corresponding to a RIRF of h will be larger than P*. In addition, the “max-min”
samples are calculated by GA which is a stochastic search method. Therefore, there
will be variability in the number of actual iterations.

In order to account for both deviations from the theoretical case, a correction factor
a is introduced to define the number of processors needed beyond P*. The predicted
number of processors needed Ppred is given as:
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Ppred ¼ ð1 þ aÞP* ð14Þ

where a is found experimentally as described in the result Section 4.2.

4. Results
4.1 Description of the test examples
Analytical test examples are used to study the parallel implementation of EDSD. The
functions are derived from the same general equation written as a function of the
dimensionality d (Basudhar and Missoum, 2010):

f ðxÞ ¼
Xd
i¼1

ðxi þ 2jÞ2 2 3
Xd22

j¼1

Yjþ2

l¼j

xl þ 1 j ¼

21 modði; 3Þ ¼ 1

0 modði; 3Þ ¼ 2

1 modði; 3Þ ¼ 0

8>><
>>: ð15Þ

For instance, for d ¼ 3, the problem of equation (15) is to reproduce the following zero
iso-value of f:

f ðxÞ ¼ ðx1 2 2Þ2 þ x 2
2 þ ðx3 þ 2Þ2 2 3x1x2x3 þ 1 ¼ 0 ð16Þ

Equation (15) represents a non-convex set of disjoint regions. During the sampling
scheme, the samples corresponding to f(x) . 0 and f(x) , 0 are labeled þ 1 and 21,
respectively. A polynomial kernel is used to construct the SVM boundary in each of the
examples. For all examples, starting from small CVT DOEs, the parallelization of
EDSD is implemented until 1k # 0.01. The initial numbers of training samples to
construct the SVM boundary for each dimensional case are given in Table I.

4.2 Experiments and discussion
As mentioned previously, the basic metric used to assess the efficiency of the parallel
implementation of EDSD, which is the focus of this work, is the number of iterations
required for convergence of the adaptive sampling scheme. From the number of
iterations, a speedup is studied as a function of the number of iterations vs P. Beyond
the study of the speedup, this section proposes an approach to find the predicted
number of processors needed. For this purpose, we introducea as described in Section 3,
which enables one to quantify how much the actual number of iterations departs from
the ideal number of iterations based on linear speedup. In addition, a includes the
variability due to the GA used to solve equation (4).

4.2.1 Speedup of the parallel implementation of EDSD. The number of iterations is
studied as a function of the number of processors P as well as a function of the
dimensionality d. For each experiment (i.e. (P, d ) pair), the actual (“experimental”)
number of iterations NP is plotted along with the ideal (“theoretical”) number of
iterations Ntheory

P , which equals to N1/P based on equation (9).

Problem dimension d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7

NTinitial 40 80 160 320 640

Table I.
Initial numbers of

training samples for 3D
though 7D cases
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The actual and theoretical number of iterations as a function of the number of
processors P is depicted for 3D to 7D cases in Figure 2. It is interesting to note that for
some instances the parallel implementation might require slightly less iterations than
the theoretical case. The 5D case implemented with two processors in parallel provides
a good example of this phenomenon. Two “max-min” samples are obtained and
evaluated followed by the update of the SVM boundary. In this case, the actual number
of iterations is less than the theoretical one.

4.2.2 The quantification of a. Since the experimental iteration numbers deviate from
the theoretical one, a is used as a measure of the number of processors needed beyond
P* described in Section 3. Another incentive for using a stems from the fact that the
number of iterations for convergence varies from time to time due to the stochastic
nature of the GA. In order to assess a, the number of iterations is studied for various
dimensions and various P* calculated from a list of selected hs as reported in Table II.

In order to quantify the difference between the actual and theoretical number of
iterations, we introduce the quantity Dr:

Dr ¼
N

P* 2 Ntheory

P*

Ntheory

P*

ð17Þ

The experiments were carried out as follows: we repeated the 3D example for each P*

five times. For higher dimensions, Dr was calculated once for each P*. The runs were
then repeated five times for P* with the largest Dr. Performing several runs is
important due to the stochastic nature of the GA used to generate the “max-min”
samples.

In the course of the parallel implementation on P* processors, we observed the large
variability in the number of iterations for convergence, which leads to the large
variability of Dr. The reason for this phenomenon can be attributed to the fact that the
given 10 is very small. The phenomenon can be understood graphically as shown in
Figure 3. The results of the 3D through 7D cases are shown in Figure 4.

The maximum Dr and minimum Dr are plotted in Figure 4(a) through 4(e). The
statistics of Dr are provided in Table III.

From the experiments, the range for a is:

0 , a # 0:5 ð18Þ

Then, the predicted number of processors needed is bounded as follows:

P* , Ppred ¼ ð1 þ aÞP* # 1:5P* ð19Þ

4.3 Validation examples
In this section, analytical example and an application are used to demonstrate the
proposed approach.

4.3.1 Analytical example. This function of the example is defined by an analytical
function of five variables x1, x2, x3, x4 and x5. This analytical function is derived from
the fourth test function which has been presented in the article of Jin et al. (2001):
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Figure 2.
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f ðxÞ ¼ x2
1 þ x2

2 þ x1x2 2 14x1 2 16x2 þ ðx3 2 10Þ2 þ 4ðx4 2 5Þ2

þ ðx5 2 3Þ2 þ 45
ð20Þ

Consider all the variables are uniformly distributed within the range of [0, 10]. The
samples corresponding to f(x) . 0 are labeled þ 1, otherwise, labeled as 21. In total,
160 training samples generated using CVT DOEs are used to construct the initial SVM
boundary with a 25.24 percent initial polynomial error. The 500 population size of GA
is used.

Table IV provides the results for parallel runs for h ¼ 0.05 and h ¼ 0.1. The table
shows that the predicted range for the number of processors needed leads to
satisfactory number of iterations to convergence.

4.3.2 Linear buckling of the rectangular thin plate. This section provides an example
involving the linear buckling of a rectangular thin plate. When a thin plate is subjected
to a compressive in-plane load, the plate will buckle at a critical load. The goal is to
construct the boundary that separates buckled and non-buckled configurations. This is
a binary problem well suited for the EDSD approach.

The rectangular thin plate with length a, width b, and thickness t is simply
supported on all edges and under a uniaxial compressive in-plane load Nx in the X
direction, as sketched in Figure 5. Nx is a constant load and equals to 5,483 N/mm. The
material properties are Young’s modulus E ¼ 210,000 N/mm2 and Poisson’s ratio
n ¼ 0.3. Length a, width b and thickness t are the design variables and given in
Table V.

Selected h 0.18 0.1 0.08 0.05 0.04 0.03 0.025 0.02

P * 3 4 5 6 7 8 9 10

Table II.
The “optimal” numbers
of processors needed
based on selected hs

Figure 3.
Schematics of the
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the variability in the
number of iterations
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Figure 4.
Relative Difference

Drs for all cases
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(e) 7dimension problem. Because Dr of 5 processors
was the largest Dr among all the Drs, we rerun 5

times on 5 processors.
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(b) 4 dimension problem. Because Dr of 6 pro-
cessors was the largest Dr among all the Drs,

we rerun 5 times on 6 processors

Notes: For 3D example, each P* was repeated five times; for higher dimensions, Dr was
calculated once for each P* (labeled as symbol +); the runs were repeated five times for
P* with the largest Dr
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Based on the theory of plate buckling, the critical buckling load can be written as
Vinson (1974):

Nxcr ¼ 2
Dp 2a 2

m 2

m 2

a 2
þ

n 2

b 2

� �2

; D ¼
Et 3

12ð1 2 n 3Þ
ð21Þ

Problem dimension d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7

Mean 0.2516 0.1002 0.2079 20.0342 0.0003 20.0574
Std (Standard deviation) 0.0932 0.0718 0.1060 0.0844 0.1370 0.1351
Mean þ2*Std 0.4362 0.2437 0.4199 0.1346 0.2743 0.2128
Mean 22*Std 0.0671 20.0434 20.0041 20.203 20.2737 20.3276
Maximum Dr 0.4332 0.4909 0.108 0.3061 0.0762

Table III.
The statistics of Dr

associated with the
3D to 7D cases

N1 h Ntheory

P*
Ppred NP

286 0.1 N 1=P* ¼ 286=4 ¼ 71:5 P* , Ppred # 1:5P* N4 ¼ 91
4 , Ppred # 6 N5 ¼ 71, N6 ¼ 65

0.05 N 1=P* ¼ 286=6 ¼ 47:67 P* , Ppred # 1:5P* N6 ¼ 65
6 , Ppred # 9 N7 ¼ 51, N9 ¼ 23

Notes: N1, h, the theoretical number of iterations Ntheory

P*
, the predicted number of processors needed

Ppred, and the experimental number of iterations NP

Table IV.
Results of analytical
example

Figure 5.
Rectangular thin plate
under in-plate uniaxial
compression

Z

X

Y

b

a

t

NX

a

b NXX

Y

Thickness (t) mm Length (a) mm Width (b) mm

Min. value 3 90 90
Max. value 10 300 300

Table V.
Design variables
for the rectangular
thin plate problem
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where D is the plate rigidity, a measure of the flexural stiffness of the plate; m is the
number of buckle half-waves in the X direction; and n is the number of buckle
half-waves in the Y direction. With m ¼ n ¼ 1, the critical buckling load can be
rewritten as Vinson (1974):

Nxcr ¼ 2Dp 2a 2 1

a 2
þ

1

b 2

� �
ð22Þ

A SVM boundary is constructed in the (a, b, t) space which separates buckled and
non-buckled configurations. The initial SVM boundary, before adaptive sampling, is
constructed with ten CVT samples. For this problem, the configurations that have a
critical load Nxcr lower than 5,483 N/mm will be considered as buckled. For comparison
and calculation of the error, an accurate SVM is constructed with 8,000 samples. The
classification error is based on a test set of 106 points. The initial error is 23.49 percent.
Figure 6 shows the buckled and non-buckled configurations with respect to the length,
width and thickness. And Figure 7 shows the comparison of the accurate SVM
boundary with the final updated SVM boundary.

The results of the parallel runs using 4, 5, 6, 7 and 9 processors are gathered in
Table VI. The table includes cases with h ¼ 0.1 and h ¼ 0.05. The table demonstrates
that the range for the number of processors needed is adequate when compared to the
“theoretical” case (second column of the table).

Figure 6.
Buckled and non-buckled

configurations with
respect to the length,
width and thickness0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.3
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5. Conclusion
This article presents a study of the parallelization of EDSD approach. This work
demonstrates the efficiency of the parallelization. This is implemented by comparing
the number of iterations to reach a converged explicit boundary to the theoretical
number of iterations required following a linear speedup. By quantifying the
differences in number of iterations between the “experimental” and the ideal cases,
a range of needed parallel processors is obtained. This range also includes the
variations inherent to the GA used in the adaptive sampling scheme. The definition of
this range is important in order not to “waste” all the processors for the parallel
implementation as those might have a marginal effect on the convergence.

In the proposed work, the load per processor is assumed comparable. However, this
might not always be true, and an optimal strategy for load balancing between the
processors might be required. This will be the object of a future study.

Figure 7.
Comparison of the
accurate SVM boundary
with the final updated
SVM boundary of the
rectangular thin plate
problem

N1 h Ntheory

P*
Ppred NP

179 0.1 N 1=P* ¼ 179=4 ¼ 44:75 P* , Ppred # 1:5P* N4 ¼ 58
4 , Ppred # 6 N5 ¼ 46, N6 ¼ 38

0.05 N 1=P* ¼ 179=6 ¼ 29:83 P* , Ppred # 1:5P* N6 ¼ 38
6 , Ppred # 9 N7 ¼ 32, N9 ¼ 24

Notes: N1,h, the theoretical number of iterations Ntheory

P*
, the predicted number of processors needed

Ppred, and the experimental number of iterations NP

Table VI.
Results of the linear
buckling of the
rectangular thin plate
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