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This paper introduces a methodology for the reliability-based design optimization of systems with nonlinear
aeroelastic constraints. The approach is based on the construction of explicit flutter and subcritical limit cycle
oscillation boundaries in terms of deterministic and random design variables. The boundaries are constructed using
a support vector machine that provides a way to efficiently evaluate probabilities of failure and solve the reliability-
based design optimization problem. Another major advantage of the approach is that it efficiently manages the
discontinuities that might appear during subcritical limit cycle oscillations. The proposed approach is applied to the
construction of flutter and subcritical limit cycle oscillation boundaries for a two-degree-of-freedom airfoil with
nonlinear stiffnesses. The solution of a reliability-based design optimization problem with a constraint on the
probability of subcritical limit cycle oscillation is also provided.

I. Introduction

HE optimal design of systems with aeroelastic constraints faces

several hurdles that often originate from the presence of
nonlinearities. Among the nonlinear phenomena, limit cycle oscil-
lations (LCOs) [1,2] have emerged as an interesting design
challenge.

The LCO phenomenon is characterized by periodic oscillations of
generally moderate amplitude. It is usually not a dramatic event, but
LCOs might hamper, for instance, control and maneuverability. In
some cases, LCOs can also be a fortunate alternative to otherwise
unstable behaviors. However, from a design point of view, the
challenge lies in developing approaches to manage LCOs and
mitigate their effects in a way prescribed by the designer.

It is commonly accepted that two situations might be associated
with LCO:

1) In the transonic regime, shock waves can trigger LCOs. Wing
configurations involving stores and missiles (e.g., F-16) are partic-
ularly prone to LCOs [3].

2) Structural nonlinearities can lead to LCOs by inducing
instabilities. Such nonlinearities are found in high-aspect-ratio
wings, such as those found in high-altitude surveillance airplanes,
and are characterized by a high flexibility and large deformations [4].

Therefore, LCOs are sustained by either aerodynamic non-
linearities and/or structural nonlinearities [3]. In some situations, it
might be difficult to clearly separate the contribution of these two
factors. Studies have typically focused on one or the other [1,2,4]. In
this paper, we will only consider LCOs due to structural non-
linearities.

One of the difficulties of designing for LCOs is their subcritical or
supercritical nature. This qualifies the fact that oscillations appear
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either before or after the flutter velocity (Fig. 1). Subcritical LCOs
require a special treatment in aeroelastic design, not only because
they appear before the critical flutter velocity, but also because they
lead to discontinuous responses that hamper the use of classical
computational design tools for optimization or reliability assessment.

Because of the presence of nonlinearities, the aeroelastic behavior
(flutter and LCO) might be highly sensitive to uncertainties, which
must be accounted for in a proper aeroelastic design process. Several
publications can be found in the area of uncertainty quantification for
either general aeroelasticity problems [6] or LCOs specifically [7-9].
Other studies on aeroelastic design optimization can also be found
[10,11]. However, the specificity of LCO problems and the
corresponding discontinuous behavior have not been addressed in a
probabilistic design optimization context.

In this paper, we propose a probabilistic optimization method that
can efficiently handle flutter and LCO constraints. This is done by
constructing multidimensional explicit boundaries for flutter and
subcritical LCOs in terms of variables. The variables can be directly
related to the design (e.g., a stiffness) or loads and flight conditions
(e.g., angle of attack). The proposed approach differs widely from
traditional design of experiment (DOE) and metamodeling ap-
proaches [12—14], because responses (e.g., LCO amplitude) are not
approximated but only classified as acceptable or not. The latter
feature is essential for problems with discontinuous behaviors or
binary behaviors (accept or reject). This was demonstrated by the
first author for crashworthiness and buckling problems [15,16] as
well as biomedical device design [17]. The explicit boundaries are
created using a support vector machine (SVM) that can create
multidimensional, nonlinear, and disjoint boundaries. SVM belongs
to the class of classifiers and is widely used in the computer science
community [18,19]. The SVM boundary is constructed from an
initial DOE whose samples are classified into two categories based
on the response of the system.

In the case of aeroelasticity problems, the responses are quantified
and qualified differently for flutter and subcritical LCO constraints.
For flutter, a stable or unstable status is assigned to a specific
configuration. The classification of the configurations as stable or
unstable can be performed in two ways: through spectral analysis of
the Jacobian (when available) or a stability analysis based on the time
history of the mechanical energy. Section III provides details about
these two approaches. For LCOs, discontinuities are detected using a
clustering technique (e.g., K-means [20]), which leads to the
formation of two classes. This is used to directly generate the sub-
critical LCO boundary (Sec. IV).
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Fig. 1 LCO amplitude in the sub- and supercritical regions.

Once the explicit boundaries are constructed, they are used to
calculate probabilities of failure through efficiently evaluated Monte
Carlo simulation (MCS). These estimates can then be used to
perform reliability-based design optimization (RBDO) [15] as
described in Sec. V.

The proposed methodology is demonstrated on a simple airfoil
with two degrees of freedom (DOF) in pitch and plunge [21]. The first
set of results deals with the construction of explicit flutter boundaries
for an airfoil with linear behavior. The stability analysis is carried
based on the Jacobian and on the time history of the mechanical
energy. The second set of results concerns the construction of explicit
subcritical LCO boundary for the airfoil problem with nonlinear
stiffnesses. The LCO boundary is subsequently included in an
RBDO problem with a constraint on the probability of occurrence of
subcritical LCOs.

II. Explicit Design Space Decomposition

The central approach of the proposed methodology is referred to as
explicit design space decomposition (EDSD) [15], whereby the
boundaries of failure (or infeasible) regions are defined explicitly
with respect to the variables. The approach consists of classifying the
designs as acceptable and unacceptable and explicitly defining the
boundaries that separate them. Therefore, the approach does not
approximate responses, as traditionally done, but classifies them.
Figure 2 provides an example of design space decomposition.

The explicit boundaries are obtained using an SVM classifier
[18,19]. This technique is general, as it allows the definition of
explicit nonlinear boundaries in a multidimensional space and can
form disjoint regions. More specifically, consider a set of N
training points x;. Each point is associated with one of two classes
characterized by a value y; = £1. A general expression of the
SVM is

N
s=b+z)‘iyiK(Xivx) (1)

i=1

where A; are Lagrange multipliers, b is a scalar determined by
quadratic programming optimization, and s is negative or positive,
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Fig. 2 Example of explicit boundaries in the design space (x;,x;)
delimiting stable and unstable system behaviors.
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Fig. 3 Basic methodology of explicit design space decomposition using
SVM.

depending on the predicted class. Several types of kernel exist,
such as polynomial, radial basis, etc. [18]. In this study we use the
Gaussian kernel, but this choice is not essential, as other kernels
would lead to very similar results:

ell2
K(x;, x) = exp(— u) @

207

where o is a width parameter of the kernel.

Figure 3 provides an overview of the EDSD methodology:

1) Perform a uniform DOE, such as centroidal voronoi tesselation
(CVT) [22], with the chosen design variables. In a perfectly uniform
DOE, the Euclidean distance between each pair of samples is
identical.

2) Evaluate the state of the system with a simulation for each DOE
sample. Classify them as acceptable or unacceptable.

3) Define the explicit boundaries of the failure regions using SVM.

To minimize the number of function evaluations required for the
training of the SVM and obtain an accurate boundary, an adaptive
sampling scheme was introduced by the authors [23]. This
refinement is essential for the scalability of the EDSD approach in
high-dimensional spaces.

III. Classification for the Construction of an SVM
Explicit Flutter Boundary

This section describes the construction of explicit flutter (stability)
boundaries in terms of deterministic and/or random variables using
EDSD. The classification used to train the SVM consists of
classifying the samples into stable and unstable configurations. This
classification is performed in two ways. The first approach assumes
the availability of the Jacobian (or its approximation) for a spectral
analysis. The second approach is based on the transient response of
the system and is best suited for problems involving black-box
simulations.

A. Stability Analysis Based on the Jacobian

Consider a system governed by a set of n first-order differential
equations:

X' =f(X;p) 3

where p is a vector of parameters. At equilibrium, we have
f(X;p) = 0. Based on linear stability theory, the n eigenvalues A; of
the Jacobian J of component J;; = df;/90X; provide the following
information on the stability of the system at equilibrium:

DIfNR(X;) <0V i, the system is stable.

2)If 3 i R(X;) > 0, the system is unstable.

It is therefore possible to classify a system configuration as stable
or unstable by evaluating the sign of the maximum real part of the
eigenvalues. Each sample X; of the DOE is then assigned a value
y; = sgn(max(N(A;))) (.e., y; = 1) for the training of the SVM.
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Fig. 4 Mechanical energy for a stable (left) and an unstable
configuration (right). The dashed line represents an exponential least-
squares approximation whose exponent p; is either positive (unstable) or
negative (stable).

Note that in problems involving LCOs, the flutter point is a Hopf
bifurcation [21,24]. It represents the transition from a stable
equilibrium to an oscillatory behavior. A Hopf bifurcation is
characterized by one, and only one, pair of conjugate eigenvalues
(A, A) of the Jacobian with vanishing real part, and at an equilibrium
point (Xg,p*), the transversality condition must be satisfied:

dR(A)/dp; # 0.

B. Stability Analysis Based on the Mechanical Energy

Another approach to assess the stability of a given configuration
consists of studying its response in the time domain. This approach
is essential in the case of black-box codes for which the Jacobian
is not available. In addition, the study of the system’s response is
the only way to assess the true stability boundary (as opposed to
based on a linear assumption) of a nonlinear system in the general
case.

In this study, the response considered is the mechanical energy
defined as the sum of the kinetic and the elastic energies. This
approach has the advantage of encompassing all the degrees of
freedom of the systems in one quantity. For an asymptotically stable
system, the energy will converge. For an unstable system, the system
energy will continue to grow unboundedly. To capture the trend, the
following function,

y(@) = pie’’ “)

with parameters p; and p,, approximates (in a least-squares sense)
the peaks of the mechanical energy. If p, is negative, the system is
classified as stable; otherwise, it is unstable. From this, each sample
of the DOE is assigned a class y; = =£1. Figure 4 provides examples
of stable and unstable configurations. An example of calculation of
the mechanical energy is provided in Sec. VI.B.2 for a two-degree-
of-freedom system.

{7 Discontinuities.
Subcritical LCO.
" sCluster #1. Class +1.

LCO amplitude

Fig. 5 Schematic representation of classification of discontinuous
subcritical LCO amplitude using two clusters for two generic variables
x; and x,. The clusters are identified automatically using K-means,
therefore allowing the construction of an SVM explicit boundary.

IV. Classification for the Construction of an
Explicit Subcritical LCO Boundary

The subcritical LCOs appearing before the flutter point are
characterized by a discontinuity in amplitude, as presented in Fig. 1.
This discontinuity can therefore be used as a way of classifying the
DOE samples into subcritical LCOs or not. The discontinuous
behavior can be efficiently identified by a clustering technique such
as K-means [20]. The K-means algorithm identifies an a priori given
number of clusters. This is done by minimizing the sum of the
distances of the samples in a cluster to its centroid. In the problem of
isolating the subcritical discontinuities, two clusters only must be
identified. It is noteworthy that cluster identification can be difficult
in a multidimensional space. However, in this work, the DOE is close
to uniform and only one response is used, thus simplifying the
clustering. In fact, for a perfectly uniform DOE, the cluster
identification could be reduced to a one-dimensional problem using
the amplitude response only. This classification of the amplitude in
two clusters provides a natural way of constructing an explicit
boundary for subcritical LCOs. Based on its cluster, a DOE sample
will be assigned a y; = £1 value for the training of SVM. Figure 5
provides a schematic explanation of the methodology.

V. RBDO Solution Scheme
We consider the following formulation of RBDO problem:

min  f(X) (5a)

subject to P(x € Q) < Py (5b)

where P is the target probability, x is a vector of random variables,
and the bar sign represents the mean. That is, the optimization search
is carried out with respect to the mean of the variables, and the
probability of failure is assessed based on the probabilistic
distribution of the variables. 2, is the failure domain in which
boundaries are defined with an SVM. Examples of failure domains
are the regions where subcritical LCOs occurs or instability regions.

The calculation of the probability of failure P, can be achieved
through approximation schemes such as MCS, first- and second-
order reliability method, and advanced-mean value [25,26]. In the
proposed SVM-based approach it is natural to use MCS, because the
evaluation of the state of a Monte Carlo sample through Eq. (1) is
very efficient. However, the inclusion of a brute-force MCS process
within an optimization loop is not recommended for three main
reasons:

1) It is relatively time-consuming.

2) The probability calculated by MCS is noisy due to the
randomness of the sampling.

3) The probabilities are typically low and can vary by orders of
magnitude during the optimization process.

To regularize the probabilistic constraint, the reliability index B is
used:

p=—-2"'(Py) 6)

where @ is the standard normal cumulative distribution function.

The reliability index is then approximated by support vector
regression [27]. The approximation is constructed by calculating the
probability of failure and the corresponding reliability index at each
DOE sample initially used to construct the SVM boundary. This
approximation is then used to solve the optimization problem whose
objective function and constraints are explicit function of the
variables. This approximated optimization problem is formally
written as

min  f(X) (7a)
subject to B(x) > By (7b)

where B is the approximation of the reliability index and B; is the
index value for the target probability P;. The optimization can then
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Fig. 6 Description of the two-degree-of-freedom airfoil [21].

be solved using a gradient-based method such as sequential quadratic
programming (SQP) or global methods if local optima are present
[15,16] without requiring any further aeroelasticity analysis.

VI. Test Examples

The proposed methodology will be demonstrated on a 2-DOF
airfoil in the following cases:

1) Construction of a flutter boundary for a linear configuration for
which the Jacobian is available analytically as described in Sec. IIL.A.

2) Construction of a flutter boundary for a linear configuration
based on the time history of the mechanical energy as described in
Sec. IILB.

3) Construction of a subcritical LCO boundary for a configuration
with structural (stiffness) nonlinearities as described in Sec. IV.

4) Solution of an RBDO problem, as described in Sec. V, with a
constraint on the probability of occurrence of subcritical LCOs.

A. Airfoil Problem

The problem consists of a 2-DOF airfoil (Fig. 6). The DOF are the
pitch angle « and the plunge displacement /4. The stiffnesses in pitch
and plunge are assumed to be polynomials leading to the following
form for the restoring moment M, and force F,:

My =K, (o + k3o0 +kso0®)  Fy =K, (5 + k3,8 + ks, E5) (8)

where £ = h/b is the nondimensional plunge. As mentioned in the
Introduction, these nonlinear stiffness properties (representative of
structural geometric nonlinearities for actual wings) make LCOs
possible. The stiffness terms k3,,ks,, k3j,, and ks, provide the relative
importance of the nonlinear terms in comparison with the linear
terms. A softening spring (e.g., k3, < 0) can lead to subcritical LCOs,
whereas a hardening spring (e.g., k3, > 0) will lead to supercritical
LCOs. Details of the behavior are provided in Sec. VL.C.

The aeroelastic equations of motion were derived in the linear
elastic case by Fung [28]. In the nonlinear case, Lee etal. [21] derived
the equations for cubic stiffnesses. In this paper, we use identical
equations of motion with the addition of a pentic stiffness term in
pitch. The pentic stiffness in plunge is set to zero. Incompressible
flow is assumed.

A system of eight first-order differential equations is obtained for
which the Jacobian is available analytically [21]. The time
integration was performed using the explicit Euler method. The code
was fully parameterized with respect to the following quantities:

Table 1 Airfoil reference configuration for the
construction of flutter boundaries

Initial pitch 0.05
Initial plunge 0.0
Reduced velocity 6.0
Mass ratio 40
Elastic-axis midchord separation a;, —-2.0
Center-of-mass elastic-axis separation x, 1.8
Radius of gyration r,, 1.8655
Initial velocities 0
Damping in pitch and plunge 0
Nonlinear stiffnesses 0

60-
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20.L
1
0.9 e
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0 B 16
w e
06 10’ Ur

Fig. 7 SVM flutter boundary as a function of the natural frequency
ratio @, the reduced velocity Uy, and the mass ratio x.

initial pitch o, initial plunge &, reduced velocity Uy, airfoil-to-air
mass ratio & = m/mpb?, natural frequency ratio w = @plunge/ Dpitchs
radius of gyration r,, airfoil geometry parameters as depicted in
Fig. 6, and stiffnesses.

B. Construction of Flutter Boundaries for the Airfoil Problem

To generate the linear flutter boundary, a CVT DOE was
generated with 1000 samples based on the variations of three
variables: w, w, and Uy. For the sake of comparison, the boundary
was generated using the eigenvalues and using the time history of the
system energy. A list of numerical values of other fixed parameters is
provided in Table 1.

Plunge LCO
amplitude
0.7
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05 ~ .
Softening case
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0.3
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02 P Hardening
: A case
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)
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5 6 7 8

Reduced velocity
Fig. 8 Plunge amplitude for a softening (k;, = -3 <0) and for a
hardening case (k3, = +3 > 0). The dashed line shows for which reduced
velocity the discontinuity occurs (before the flutter point).
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Fig. 9 Pitch amplitude as a function of the initial angle of attack and the

pitch cubic stiffness. The subcritical LCO boundary confirms the

intuitive expectation that subcritical LCOs only occur for a softening

spring and perturbed initial conditions.



Downloaded by UNIVERSITY OF ARIZONA on December 5, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.46665

996 MISSOUM, DRIBUSCH, AND BERAN

Table 2 Airfoil reference configuration

for LCO boundaries

Initial plunge 0.0
Reduced velocity 6.0
Mass ratio 100
Natural frequency ratio 0.2
Elastic-axis midchord separation a;, —0.5
Center-of-mass elastic-axis separation x, 0.25
Radius of gyration r,, 0.5
Initial velocities 0

Damping in pitch and plunge 0

Pentic stiffness 20

1. Classification Based on Spectral Analysis

For the airfoil problem, the Jacobian is readily available analyt-
ically [21], so the extraction of eigenvalues A; is straight-
forward. The samples are classified as described in Sec. IIL.A for the
construction of the SVM-based explicit flutter boundary.

2. Classification Based on Mechanical Energy

For the same linear configuration, the stability analysis was
performed using the approach based on time history of the energy of
the system (Sec. IIL.B). The system energy is calculated from the pitch
and plunge velocities and the deformation of the springs. For the 2-
DOF system, the classification is not based on the system energy E
directly, but on the dimensionless system energy E, defined by

E

E=——
pU*b?

®
The energy stored in the spring in plunge is calculated as

- w\2(1 1 1
E springs = U (U_R) (5 £+ Zk3h§4 + gksﬁﬁ) (10)

Similarly, for the spring in pitch,

_ re \2 (1 1 1
Espringa = Mﬂ(U_R) (E a2 + Zk3aa4 + ngaaﬁ) (1 1)

The kinetic energies are calculated as

Ekinelics = %M”sﬂ + 2X‘X(X/E/ COS(O[) + (xaa/)z (12)

E kinetica — %HJTUIZ?O[Q (13)

where the prime notation represents the derivative with respect to the
nondimensional time T = Ut/b. Note that we are considering a linear
behavior, so the terms of degree larger than 2 in Eqs. (10) and (11) are
set to zero. The two approaches used for the construction of the

°

o9,
°
\

g
Qdrd

Subcritical

explicit linear flutter boundary lead to identical classifications and
SVM surfaces (Fig. 7).

C. Subcritical LCO Boundary: Airfoil Problem

Subcritical LCOs are characterized by a discontinuity in
amplitude. In the case of the airfoil problem, this means a
discontinuity from the equilibrium state (i.e., X = 0) to oscillations
occurring before the linear flutter boundary. Figure 8 provides a
depiction of the discontinuity of the response as a function of the
reduced velocity for the softening and hardening case.

These discontinuities, detected by the K-means clustering
algorithm, enable the classification of the responses for SVM.
Figure 9 depicts the pitch amplitude with respect to the initial angle of
attack o, and the pitch cubic stiffness k3,. This was done for a
reference configuration given in Table 2. The boundary depicted in
Fig. 9 can be physically interpreted as follows: no LCOs can appear
for a zero initial angle of attack. In other words, the system is in
equilibrium (zero amplitude). LCOs occur starting from a certain
negative value of the stiffness (i.e., a softening spring) and value of
the initial angle of attack. For an increasingly softening spring, LCOs
will occur for smaller values of the initial angle of attack.

The construction of the subcritical SVM boundary was extended
to a problem with three variables by adding the plunge cubic
stiffness. The corresponding boundary is depicted in Fig. 10. The
other parameters of the problem are given in Table 2. Figure 10
confirms that the occurrence of subcritical LCOs requires both a
softening spring and an initial perturbation from the equilibrium
configuration.

VII. Reliability-Based Design Optimization

with the Airfoil Problem

Once the subcritical LCO boundary is obtained explicitly, it is
possible to efficiently solve an RBDO problem as described in
Sec. V. The RBDO methodology is applied to a nonlinear aero-
elasticity optimization based on the 2-DOF airfoil. The problem
considered is the minimization of the sum of cubic stiffnesses while
avoiding subcritical LCOs with a given target probability P;. The
design variables are the cubic plunge and pitch stiffnesses, which are
considered as normally distributed. In addition, the initial pitch is a
random variable with uniform distribution as the values of the angle
of attack are assumed equiprobable. The optimization problem is

min ks, + ks, (14a)
k3o k3
subject to P((ksy, ks, a9) € Qf) < Pr (14b)

where the bar sign represents the mean. €2 is the three-dimensional
failure domain where subcritical LCOs occur as depicted in the
previous section (Fig. 10).

e . 7/‘/__1»/ 0
0 -4 -3 2
kSa

Fig. 10 Subcritical LCO boundary as a function of the angle of attack, and the pitch and cubic stiffnesses. Again, subcritical LCOs only occur for a

softening spring and perturbed initial conditions.
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Fig. 11 Approximation of the reliability index and optimal solution.

Note that the choice of the objective function was motivated by the
fact that a traditional objective is to minimize weight. However, in
the airfoil problem, the only design modifications possible are the
stiffnesses. The proposed objective function assumes that stiffness
reduces when the weight reduces. This assumption does not remove
any generality to the methodology. In fact, models for which some
design variables are explicitly related to the weight (e.g., a finite
element model) could also be used.

The target probability Py is set to 10~* and probabilities of failure
are calculated based on 10°samples. The distributions and ranges of
the random variables are ks, € [—4,0]: N(ksy,0.15), k3;, €[0,4]:
N(k3,,0.15), and «y: U(0,0.6).

As described in Sec. V, in order to perform the optimization, the
probabilities, calculated at the DOE samples, are transformed into the
corresponding reliability indices. The reliability index over the
whole search space is then obtained through approximation (Fig. 11).
The optimization is then performed using SQP to reach the following
optimum k3, = —1.927 and k3, = 0.0 for which the probabilistic
constraint is active. The actual probability of failure at the predicted
optimum, based on MCS, is 5.7 x 107%. Figure 11 depicts the
approximated reliability index as well as the optimum solution.

VIII. Conclusions

This paper introduces an approach for the probabilistic optimal
design of nonlinear aeroelastic problems. The method relies on the
construction of explicit stability (flutter) and LCO boundaries using
SVM. The classification used for the construction of SVM makes use
of stability properties (e.g., eigenvalue sign) for flutter or the
presence of discontinuities for subcritical LCOs. These constructions
enable an efficient assessment of probabilities of flutter or LCOs and
are used to solve RBDO problems.

The next step of this research will include a larger number of
variables and the use of multifidelity approaches to reduce compu-
tational expenses.
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