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Abstract This note introduces a derivation of the
sensitivities of a probability of failure with respect to
decision variables. For instance, the gradient of the proba-
bility of failure with respect to deterministic design
variables might be needed in RBDO. These sensitivities
might also be useful for Uncertainty-based Multidisci-
plinary Design Optimization. The difficulty stems from
the dependence of the failure domain on variations of the
decision variables. This dependence leads to a derivative
of the indicator function in the form of a Dirac distribu-
tion in the expression of the sensitivities. Based on an
approximation of the Dirac, an estimator of the sensiti-
vities is analytically derived in the case of Crude Monte
Carlo first and Subset Simulation. The choice of the Dirac
approximation is discussed.
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1 Introduction

In its most general form, a probability of failure is defined
as:

Pr(z,0) = f fx (x]6)dx (1)
Qf(2)

where z € R" are decision variables (e.g. design variables)
and & € RP? are hyper-parameters of the joint probabil-
ity density function (PDF) fx of the random variables X €
2, with € the sampling space. Q27 stands for the failure
domain. Note that # only influences the joint distribution
while z only influences the definition of the failure domain
Q. Beyond reliability assessment, such a probability of
failure also appears in Reliability-based Design Optimiza-
tion (RBDO) (Youn et al. 2004; Aoues and Chateauneuf
2010) or in Uncertainty-based Multidisciplinary Design
Optimization (UMDO) (Brevault et al. 2014).

When gradient-based techniques are used to solve RBDO
or UMDO problems, the sensitivities of Py are needed
(Zou and Mahadevan 2006; Lee et al. 2011; Lacaze and
Missoum 2013). Sensitivities of Py with respect to # have
been derived for various reliability analysis techniques (Zou
and Mahadevan 2006; Lebrun and Dutfoy 2009; Song et al.
2009; Dubourg et al. 2011). Sensitivities with respect to
decision variables z have also been derived for moment-
based techniques such as the Reliability Index Approach
(Bjerager and Krenk 1989) and the Performance Mea-
sure Approach (Nikolaidis et al. 2004). However, there are
no derivations for sampling-based approaches (e.g., Crude
Monte Carlo, Subset Simulation).

The difficulty stems from the dependence of the fail-
ure domain on the decision variables. In many approaches,
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probabilities of failure are calculated based on a fixed failure
domain. For methods involving the estimation of the
gradient of the probability of failure, this has confined pre-
vious RBDO and current UMDO techniques to problems
that exclude deterministic design variables. Sensitivities
of the probability of failure with respect to determinis-
tic variables would therefore substantially extend previous
gradient-based RBDO techniques and offer new perspec-
tives in UMDO.

The objective of this note is to propose a formulation
of the sensitivity of the failure probability with respect
to the decision variables z. For this purpose, an analyt-
ical derivation based on the properties of the indicator
function I is proposed (Section 2). Estimators for the
sensitivity using Crude Monte Carlo simulation and Sub-
set Simulation (Section 3) are subsequently derived. In
addition, the numerical implementation of the proposed
formulation requires the approximation of a Dirac dis-
tribution (Section 4). In Section 5, the sensitivity esti-
mates are compared to a case where the exact sensitivities
are available. This section also discusses the choice of
a parameter involved in the approximation of the Dirac
distribution.

2 Sensitivity of Py with respect to decision variables

In most applications, the failure domain is expressed as:

2y(2) = {x]g(x,2) <0} @

where g is called the limit state function, which depends
on random variables X and decision variables z. This leads
to another well known expression of the probability of
failure:

Pr(z) Z/QHg(x,z)SOfX(X)dX 3)

For the sake of clarity and without loss of generality,  was
omitted. According to the differentiation rules under the
integral symbol using the theory of distributions (Schwartz
1957; Jones 1982), the sensitivity of Py with respect to the
variable z; reads:

Py

0
= 9z I <ofx (x)dx
oz |, 0 Jalsxm<ofx (%)

= g 75 Texm <ofx (X)dx 4)
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From the theory of distributions, the derivative of the indi-
cator function is:

dly>o dlly<o +oo ify =0
y=0 Y= :8),:{ y (5)

dy dy 0  otherwise

where § is the Dirac distribution (“impulse”). Hence, (4)
becomes:

_ /%
z Q aZk
Note that (6) involves the derivative of g. Such derivatives

are always available if g is replaced by an approximation g
such as a metamodel.

an

) f d 6
92k g(x,z) x (x)dx (6)

X,Z

3 Sensitivity estimators

In practice, the integrals involved in (3) and (6) are
intractable. In order to evaluate the integral in (3), sampling-
based techniques are typically used. The so-called Crude
Monte Carlo (CMC) estimator is defined as:

1 N
Pr@ ~ =) Ly(x0.2)<0 (7)
i=1

where X = {XD .. XM} is a CMC sample of size N
distributed according to fx. From (6), the CMC estimator of

Pr ..
EIS'
N
0Py 1 g
e e Y 8, (x 8
Az . N — Ak X0 2 g(X® z) (®)

Howeyver, in the case of a rare event, CMC simulations
are intractable. For this reason, a wide variety of variance
reduction techniques have been introduced over the years
(Rubinstein and Kroese 2011). Among them, the Subset
Simulation (SubSim) (Au and Beck 2001; Song et al. 2009)
derives a small probability of failure as a product of larger
conditional ones. Specifically, given a failure domain £2,
let 27 =82 D Q2p D --- D 2y, = §2f be a decreasing
sequence of m + 1 failure domains where:

2y(z) = {x] gi(x,z) <0} Vi={1,...,m} ©)]

(3) can be expressed as:

Pr@) =[] Pr@ (10)
i=1
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where:

Pr(z) = / I, x,z<ofx (X)dx (1)
Q

andforVi = {2,..., m}:

Pf(z) = /Q Ly x2)<00i—1 (X2, (2)) dx (12)

with ;1 (X|Q fiot (z)) the conditional auxiliary PDF asso-
ciated to the failure domain 2, (z) defined as Song et al.
(2009).

Lo, 1 x,n<0

qi-1 (X1, (2) = YT

fx (x) 13)

Therefore:

I
Pi(z) = / I (x, 2) < 0—51%D=0 gy (wyax
Q 1_[] 1 fj(z)
Lo.x 7)<
=/l.g_lf‘—”)—°fx(x)dx Vi=1{2,...,m)
Q 1_[]:1 Py, (z)
(14)
Based on SubSim, the sensitivity of Py is:
0P| _ i aPy 15
02k |, = Pr@ 9z |,
For the first SubSim sub-domain, we have:
0Py / 0g1
—| =- — § fx (x)dx 16
8Zk , o aZk " g1(x,2) X( ) ( )

and for any subsequent step i > 1:

Py I | _lexa=o
o= | | =920 Hpxyd
Azk z /QBZk |:l—[l'1 P, (z) x (x)dx
j=117;
S / 981 —85"‘“) fix (x)dx
Q azk X,Z 1_[ 1 Pf]

% [Hj;l Pfj(z)]
[T/Z) P} @

Noting the three following relations:

/ Ig; (x.zy<ofx (x)dx (17)
Q

/Qﬂgi xz<ofx(X)dx = l_[ Py, (z) (18)

j=1

i1 i1 =y Py,

Pr(z) | =| | Py (z }
U 1 (@) U 53 )Z Py (z) 0z |,
j=1 j=1 j=1 !

H;_:ll Py i (z)

fx(x) =
x® Hgi—l(xyl)fo

qi-1 (xIQf_, (@) Vx € Qy (@),
(20)

and that the support of q;— (-|Q_, (@) is Qf,_, (z), the i
intermediate sensitivity is:

Py, __/ 98i
z Q 02k
anj

0Zk
Pr( ); Pf @ 9z |,

Each of these derivatives can be estimated using the result
of a SubSim. Given X a SubSim sample defined as X =
{X1,...,X,,} such that:

3g,- xn8i-1 (XI2,_, (@) dx

2y

X1 ~ qo (1R @) =fx (22)
Xi ~ qi—1 (~|Qﬁ_,(z)) Vi=1{2,...,m}, (23)
the estimators of the sensitivities (16) and (21) are:

Ny

Py, agl
—| =~ (24)
0zk |, Z 92k |x® 4 (XEI)»Z)
N.
dPy 1 < 9gi
Il A~ — = o8i 5 (w0
0Zk |, N;i = 07k XI('/)’Z gx( i ,z)

i—1
1 an‘
— Py J
f,(z)z Py (z) 0z |,

j=1

(25)

Combining all the intermediate sensitivities, we finallyget:

3Pf ’
0Zk

“ 1
1(2) ;:1 {Pf,. @ [

1 al agi s
N; g (Xl(l) ) z)
X0z

)

I=1 (
L

0Py,
- P J
fi (Z)Z Pfj () 0z

(26)

4 Dirac distribution approximation

The presence of a Dirac distribution in the equations makes
the numerical computation of the sensitivities intractable. To
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overcome this hurdle, the Dirac distribution is approximated
using a smooth function ¢ such that lim é,(c0) = §. This
o—0

approach has been widely used in the past, (e.g., Yoo and
Lee 2014, for Gaussian approximation). Five candidates are
considered in this work:
2
Gaussian §,(0) = o«/lﬁ exp 207 = 1o ()
1)
d()—d(—1) —0=y=o

Truncated Gaussian & y(0) =

Sine §,(0) = S‘“y(—;)
1

Bump §,(0) = A exp =(5)° I s<y<o

I

A= filexp 1= dy

. Q _ o
Poisson 6, (0) = T

All these functions include a scalar parameter o which

dictates the “width” of the Dirac approximation. The choice

of the approximation as well as o is of prime importance.

Ideally, one would like o to tend to zero. However, because

we are using sampling-based methods, only a finite amount

of information is available. For this reason, an “optimal”
value of o needs to be chosen.

5 Numerical experiments. Selection of o

The optimal value of o and the choice of Dirac approxima-
tion might be problem dependent. Statistically, the optimal
choice is the one that minimizes the error between the actual
and the estimated sensitivity. Knowing the true sensitivity,
traditional performance metrics of an estimator can be com-
puted, such as normalized bias (Bias), standard deviation
(Std) and root mean square error (RM SE):

Bias (%) = 100 x M 27)
~ 2
Std (%) = 100 x \/]E [1#2] " [1/'] (28)
¥
e[(r-9)]
RMSE (%) = 100 x — (29)

where 1 is the actual sensitivity as defined in (34) and v
is an estimator of v, as defined in (8). At this point, it
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is important to recall that the estimator of the sensitivity
encompasses two levels of approximation:

5g(x,z) fx (x)dx

X,Z

Sg(x.nfx (X)dx (30)

X,Z

lN g
%—NZE

9
z_fsz%

9
~=Jo 5

X 8 (&D2) S

Because Monte Carlo estimators are unbiased, (31) only
introduces variance in the estimator. On the other hand, (30)
is an analytical approximation, and only introduces bias
on the estimator. Although the variance could be estimated
using the standard error, the bias is not strictly speaking
statistical. Therefore it cannot be quantified statistically,
such as with leave one out approaches.

In this article, the “optimal” o is obtained through exper-
iments. Although it is not the optimal value for any problem,
this educated guess would lead to better results than an arbi-
trary one. As a demonstrative case, consider the following
linear analytical limit state, for which analytical sensitivities
can be derived:

gx,z2)=—x—2z+d <0 (32)

where X ~ N(0, 1). Because the limit state function is
linear, the probability of failure and its derivative can be
obtained exactly:

Pr(z)=1—d(d —2) (33)

dPy

o | =%@d-2 (34
z Z

where ¢ (resp. @) is the standard normal probability den-
sity (resp. cumulative distribution) function. The number of
CMC samples (N) is defined to ensure a 5% coefficient of
variation on the probability of failure:

2

J1 =P

Ne = | (P (35)
Pr(z) x 0.05

where Py is defined by (33).

o is a function of the number of points (i.e. the amount
of information) available, which is in turn influenced by the
value of Py. For this reason, a parameter o is introduced to
define a fraction N, of the available samples so that N, =
|_Pf x N x a-|, where Py is estimated using (7).

Because the optimal value of o is also dependent on
the order of magnitude of g, the following quantities are
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Fig. 1 Normalized bias (Bias), standard error (Std) and root mean square error (RM SE) for four levels of probability of failure
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Table 1 Normalized bias (Bias), standard error (Std) and root mean square error (RMSE) at @ = a,p, and o« = 0.5. Gaussian approximation

Py 107! 1072 10-3 10~

Aopr et 0.94]0.50 0.59]0.50 0.53]0.50 0.50/0.50
Bias(op)|Bias(a) 2.521.54 2.62/1.94 2.3012.03 2.55[2.55
Std(topr)|Std (@) 3.40]5.15 4.74/5.18 4.8915.04 5.22|5.22
RMSE (op)IRMSE (o) 4.23|5.36 5.41|5.52 5.40]5.43 5.80]5.80

defined. Let y be the vector of responses such that y; =
g (XU ), z), |y| the vector of absolute values of y and the rank
operator such that y(;y = min(y) and y(y) = max(y). o is
therefore defined as |y|(n,) so that only the N, closest points
from the limit state have function value within +o. These
points are the most relevant to the calculation of the sensi-
tivity of Py because they will potentially lead to a variation
of Igx,2)<0-

The experiment is repeated for four values of d such that
Py equals 1071, 1072, 1073, and 10~*. For SubSim, each
probability step (here, 10~!) is estimated using CMC (w.r.t
a conditional distribution). Figure 1 shows the plots of nor-
malized bias (27), standard error (28) and root mean square
error (29) for the example introduced in (32). Expectations
in (27-29) are calculated out of 300 repetitions. The experi-
ment is repeated for 4 levels of probability. Two immediate
conclusions arise:

— The Poisson approximation shows a poor performance
compared to the other approximations,
— The Sinc approximation provides inconsistent results.

Out of the three remaining approximations, the Gaussian
one has the lowest variance across the experiments. Note
that this is a very favorable feature for optimization. In
gradient-based optimization, the variance of the sensitivi-
ties will impair the convergence properties more than the
bias. For these reasons, the Gaussian approximation is
elected.

From the results in Fig. 1, in the case of a Gaussian
approximation, a graphical inspection shows that a value
of « = 0.5 is a satisfactory choice for the minimization
of RMSE. This value can be compared the solution of the
following optimization problem:

Qopy = argmin  RMSE(«) (36)
o

Table 1 shows normalized bias (27), standard error (28) and
root mean square error (29) for ¢ = a4y and « = 0.5.
Except for the case Py = 107!, @ = 0.5 yields similar
results to o = app;. For Py = 1071 it yields an increase in
the RMSE of about 1 %.
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6 Conclusion

In this note, an expression of the sensitivity of probability of
failure with respect to decision variables is derived. Estima-
tors are proposed based on Crude Monte Carlo and Subset
Simulation. Numerical concerns regarding the approxima-
tion of the Dirac distribution are addressed. Experiments
seem to show that Gaussian approximation should be
favored with a value of « = 0.5. However, this result might
not always be true and an automatic tuning algorithm to
find the optimal « (i.e., o) as in (Morio et al. 2013) will be
investigated.
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