CODES / fit / meta

_A general meta-modeling class which contains a wide array of options

Contents

Syntax

Scaling

Scaling input data is always good practice. For example, a training set with n samples of dimension m is defined as:

$$\mathbf{X}=\left[\begin{array}{ccc}x_1^{(1)}&\ldots&x_m^{(1)}\\\vdots&\ddots&\vdots\\x_1^{(n)}&\ldots&x_m^{(n)}\end{array}\right]$$

Two main scaling are proposed:

"Square" scaling

$$x_i=\frac{x_i-\mathop{\min}\limits_{j}x_i^{(j)}}{\mathop{\max}\limits_{j}x_i^{(j)}-\mathop{\min}\limits_{j}x_i^{(j)}}$$

"Circle" scaling

$$x_i=\frac{x_i-\overline{x_i}}{S_i}$$

where $\overline{x_i}$ and $S_i$ are respectively sample mean and standard deviation such that:

$$\overline{x_i}=\frac{1}{n}\sum_{j=1}^nx_i^{(j)}$$

$$S_i=\sqrt{\frac{1}{n-1}\sum_{j=1}^n\left(x_i^{(j)}-\overline{x_i}\right)^2}$$

Parameters

param value Description
'scale' {'square'}, 'circle', 'none' Define scaling method for the inputs (c.f., Scaling for details)
'UseParallel' logical, {false} Switch to use parallel settings

Properties

Methods

Methods available for the class meta are described here

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems