CODES / sampling / cvt

Generate centroidal Voronoi tessellation samples

Contents

Syntax

Parameters

param value Description
'dummies' positive integer, {1e6} Number of dummy points for centroid calculation
'max_iter' positive integer, {50} Maximum number of iterations
'delta' positive real, {1e-4} Stopping tolerance
'lb' (1 x dim) real, {0} Minimum value of cvt samples per dimension
'ub' (1 x dim) real, {1} Maximum value of cvt samples per dimension
'halton' logical, {true} Use Halton sequence instead of random samples
'kmeans' logical, {false} Use built-in Matlab kmeans function. Using kmeans leads to more accurate results but longer computation time.
'kmean_options' cell, { {} } Name-value cell options for the kmeans function. See struct2nv
'display' logical, {true} Level of display
'force_new' logical, {false} Force to make new CVT
'force_save' logical, {false} Force to save CVT
'region' function_handle, { [ ] } Function that defines a specific region (≥0)

Example

Compute a CVT of 9 points in 2 dimensions and plot

x=CODES.sampling.cvt(9,2);
figure('Position',[200 200 500 500])
plot(x(:,1),x(:,2),'bo')
axis([0 1 0 1])
axis square

Mini Tutorial

A mini tutorial of the capabilities of the cvt function.

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems