CODES / sensitivity / dgsm

Compute derivative-based sensitivity measure

Contents

Syntax

Description

Compute derivative-based sensitivity measure of three types:

$$\mu_i^0=\mathbf{E}\left[\frac{\partial f}{\partial x_i}\right]\qquad \sigma_i^0=\mathbf{V}\left[\frac{\partial f}{\partial x_i}\right]$$

$$\mu_i^1=\mathbf{E}\left[\left|\frac{\partial f}{\partial x_i}\right|\right]\qquad \sigma_i^1=\mathbf{V}\left[\left|\frac{\partial f}{\partial x_i}\right|\right]$$

$$\mu_i^0=\mathbf{E}\left[\frac{\partial f}{\partial x_i}^2\right]\qquad \sigma_i^0=\mathbf{V}\left[\frac{\partial f}{\partial x_i}^2\right]$$

Sampling distribution

Approximations of the confidence interval are obtained based on sampling distributions of sampling mean and standard deviation:

$$\bar{X}\sim\mathcal{N}\left(\mu_X,\frac{\sigma_X^2}{n}\right)$$

$$(n-1)\frac{s_X^2}{\sigma_X^2}\sim\chi_{n-1}^2$$

Bootstrapped CI would be more appropriate here.

Parameters

param value Description
'type' {'EE'}, 'DGSM1', 'DGSM2' Derivative-based measure type. 'type' can also be a cell array to return several measures at once.
'alpha' positive integer, {0.05} Significance level for confidence interval.
'CI' logical, {false} Whether to return approximations of confidence interval, see Sampling distribution.
'CI_boot' logical, {false} Whether to return bootstraped confidence interval.
'nb_boot' numeric, {200} Number of bootstraps
'boot_type' {'bca'}, 'norm', 'per', 'cper' Type of bootstrap confidence interval (Efron, 1987)
'pie_plot' logical, {false} Whether to provide a pie plot of the output
'err_plot' logical, {false} Whether to provide an error plot of the output
'xlabel' cell, { [ ] } Variable labels to be used in plots

Example

Compute and plot an anti-locking sample

f=@(x)1/8*prod(3*x.^2+1,2);
X=rand(100,3);dY=CODES.common.grad_fd(f,X);
res=CODES.sensitivity.dgsm(dY);
disp(res.EE)
             mu: [1x3 double]
            std: [1x3 double]
     pie_plot(): pie plot of the differential coefficients

Mini Tutorial

A mini tutorial of the capabilities of the corr function.

References

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems