CODES / fit / kriging

Train a Kriging

Contents

Syntax

Description

For a training set $\left[\underline{\mathbf{X}},\underline{Y}\right]$ made of pairs $\mathbf{x}^{(i)}$ and $y^{(i)}$ such that:

$$y^{(i)}=f\left(\mathbf{x}^{(i)}\right)$$

and a mean function $m$ and an auto-correlation function $K_\theta$, the covariance function is defined as:

$$k\left(\mathbf{x},\mathbf{x}^\prime\right)=\sigma_Y^2K_\theta\left(\mathbf{x},\mathbf{x}^\prime\right)+\sigma_n^2\mathbf{I}\left[\mathbf{x}=\mathbf{x}^\prime\right]$$

where $\sigma_Y^2$ is the Kriging variance and $\sigma_n^2$ is the inherent variance, also referred to as nugget or observation variance.

The training covaraince matrix and mean matrix are defined as:

$$\Sigma_{tr}=\left[\begin{array}{ccc}k\left(\mathbf{x}^{(1)},\mathbf{x}^{(1)}\right) & \dots & k\left(\mathbf{x}^{(1)},\mathbf{x}^{(n)}\right)\\\vdots & \ddots & \vdots\\k\left(\mathbf{x}^{(n)},\mathbf{x}^{(1)}\right) & \dots & k\left(\mathbf{x}^{(n)},\mathbf{x}^{(n)}\right)\end{array}\right]$$

$$\mu_{tr}=\left[m\left(\mathbf{x}^{(1)}\right),\dots,m\left(\mathbf{x}^{(n)}\right)\right]$$

The Kriging prediction and prediction standard error are defined as:

$$\widetilde{f}\left(\mathbf{x}\right)=m\left(\mathbf{x}\right)+\left(\underline{Y}^T-\mu_{tr}\right)\Sigma_{tr}^{-1}\Sigma_{\mathbf{x}}^T$$

$$\widetilde{f}^{se}\left(\mathbf{x}\right)=\sqrt{k\left(\mathbf{x},\mathbf{x}\right)-\Sigma_\mathbf{x}\Sigma_{tr}^{-1}\Sigma_\mathbf{x}^T}$$

Correlation functions

One covariance function is available:

$$K_\theta(\mathbf{x},\mathbf{x}^\prime)=\exp\left[\frac{||\mathbf{x}-\mathbf{x}^\prime||^2}{2\theta^2}\right]$$

Mean Functions

One mean function is available:

$$m\left(\mathbf{x}\right)=\beta$$

Solvers

Two solvers are available:

Training Options

param value Description
'scale' {'square'}, 'circle', 'none' Define scaling method for the inputs (c.f., Scaling for details).
'UseParallel' logical, {false} Switch to use parallel settings.
'theta' numeric, { [ ] } Value for kernel parameter. If [ ], should be calibrated.
'delta_2' numeric, {0} Only if 'regression' set to true. Value for “nugget” parameter. If left to default, should be calibrated.
'mean_fun' {'poly0'} Mean value function, see Mean functions.
'cov_fun' {'corr'} Correlation function (also referred to as kernel or auto-correlation function), see Correlation functions.
'scale_y' {'square'}, 'circle', 'none' Define scaling method for the ouputs (c.f., Scaling (meta) for details)
'solver' {'CODES'} or 'DACE' Type of solver to use to train the Kriging, see Solvers.
'regression' logical {false} Whether regression kriging should be used. This is achieved by adding a “nugget” 'delta_2' on the diagonal of the correlation matrix, see Description.
'display' logical {true} Wether information should be displayed. For now, only display warning if correlation matrix needs to be conditioned (further than 'delta_2').
'theta_min' numeric, { [ ] } Only if 'solver' set to 'DACE'. Lower bound for the 'theta' search.
'theta_max' numeric, { [ ] } Only if 'solver' set to 'DACE'. Upper bound for the 'theta' search.

Evaluation and Post-Processing

Capabilities of a Kriging object.

Mini tutorial

A mini tutorial of the capabilities of the Kriging class.

References

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems