CODES / reliability / form
First Order Reliability Method
Contents
Syntax
- res=CODES.reliability.form(g,dim) computes a FORM estimate of the probability that . The dim random variables are independent standard gaussian.
- res=CODES.reliability.form(...,param,value) uses a list of parameters param and values value (see, parameter table).
Description
For a given limit state function and a joint PDF , the probability of failure is:
An approximation of is given by the First Order Reliability Method (FORM) which assumes that the limit state function is linear in the standard normal space. It is based on the notion of most probable point (MPP) which is found by solving the following optimization problem (RIA approach):
The reliability index is defined as the algebraic distance from the origin to the MPP in the standard normal space. The probability of failure is then approximated as:
Sensitivities of with respect to distribution hyper-parameters and deterministic variables are defined as:
Solvers
Currently available solvers:
- 'sqp', matlab fmincon using sqp algorithm
- 'hl-rf', Hasofer & Lind (1974) and Rackwitz & Fiessler (1978)
- 'ihl-rf', Liu & Der Kiureghian (1991)
- 'jhl-rf', Zhang & Der Kiureghian (1995)
Parameters
param | value | Description |
---|---|---|
'solver' | {'sqp'}, 'hl-rf', 'ihl-rf', 'jhl-rf' | Defines which RIA solver to use, see Solvers. |
'Tinv' | function_handle, { [ ] } | An inverse transformation function that transform realizations from a standard gaussian space into the desired space. For example, for an exponential space Tinv=@(u)expinv(normcdf(u),1). |
'LS_grad' | logical, {false} | Whether the limit state function g also return gradients with respect to x. |
'rel_diff' | positive, {1e-5} | Perturbation used for finite difference. |
'eps' | positive, {1e-4} | Convergence tolerance. |
'iter_max' | positive integer, {100} | Maximum number of iterations. |
'vectorial' | logical, {false} | Whether the limit state function g is vectorial. |
'display' | {'none'}, 'final', 'iter' | Defines the verbose level. |
'gz' | function_handle | g as a function of x and z, used for dPf/dz (see Mini Tutorial for an example). |
'dgdz' | function_handle | dg/dz as a function of x and z, used for dPf/dz (see Mini Tutorial for an example). |
'z' | real value | z value, used for dPf/dz (see Mini Tutorial for an example). |
'T' | function_handle | Transformation T (inverse of Tinv) as a function of x and theta, used for dPf/dtheta (see Mini Tutorial for an example). |
'dTdtheta' | function_handle | dT/dtheta as a function of x and theta, used for dPf/dtheta (see Mini Tutorial for an example). |
'theta' | real value | theta value, used for dPf/dtheta (see Mini Tutorial for an example). |
Example
Compute and plot a generalized "max-min" sample
g=@CODES.test.lin; res=CODES.reliability.form(g,2); disp(res)
Pf: 0.0013 beta: 3.0000 alpha: [0.7071 0.7071] LS_count: 6 MPP: [2.1213 2.1213] uMPP: [2.1213 2.1213]
Mini Tutorial
A mini tutorial of the capabilities of the form function. |
References
- Hasofer & Lind (1974): Hasofer, A. M., & Lind, N. C. (1974). An exact and invariant first-order reliability format. Journal of Engineering Mechanics, 100(1), 111-121.
- Rackwitz & Fiessler (1978): Rackwitz, R. & Fiessler, B. (1978). Structural reliability under combined random load sequences. Computers & Structures, 9(5), 489-494. DOI
- Liu & Der Kiureghian (1991): Liu, P.-L., & Der Kiureghian, A. (1991). Optimization algorithms for structural reliability. Structural Safety, 9(3), 161-177. DOI
- Zhang & Der Kiureghian (1995): Zhang, Y., & Der Kiureghian, A. (1995). Two Improved Algorithms for Reliability Analysis. In Proceedings of the sixth IFIP WG7.5 working conference on reliability and optimization of structural systems (pp. 297-304). DOI
See also
Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.
Computational Optimal Design of Engineering Systems |