CODES / reliability / iform

Inverse first-order reliability method

Contents

Syntax

Description

For a given target probability of failure associated with a target reliability index $\beta_T$, the inverse FORM approach finds the minimum performace target point (MPTP) $\mathbf{u}_{mptp}$ by solving the following optimization problem (PMA approach):

$$\begin{array}{rl}\mathbf{u}_{mptp}=\mathop{\arg\min}\limits_{\mathbf{u}}&g\left(T^{-1}\left(\mathbf{u}\right)\right)\\\mbox{s.t.} & \mathbf{u}\mathbf{u}^T=\beta_T^2\end{array}$$

For distribution hyper-parameters$\theta$ and deterministic variables $\mathbf{z}$, the probabilistic performace measure (PPM) is defined as:

$$G(\mathbf{z},\theta)=g(\mathbf{x}_{mptp}(\mathbf{z},\theta),\mathbf{z})$$

Sensitivities of the PPM $G$ are:

$$\displaystyle\frac{dG}{d\theta}=\frac{dT^{-1}}{d\theta}\nabla_\mathbf{x}g(\mathbf{x}_{mptp})$$

$$\displaystyle\frac{dG}{d\mathbf{z}}=\frac{dg}{d\mathbf{z}}$$

Solvers

Currently available solvers:

Parameters

param value Description
'solver' {'sqp'}, 'amv', 'cmv', 'hmv' Defines which RIA solver to use, see Solvers.
'Tinv' function_handle, { [ ] } An inverse transformation function that transform realizations from a standard gaussian space into the desired space. For example, for an exponential space Tinv=@(u)expinv(normcdf(u),1).
'LS_grad' logical, {false} Wether the limit state function g also return gradients with respect to x.
'rel_diff' positive integer, {1e-5} Perturbation used for finite difference.
'eps' positive integer, {1e-4} Convergence tolerance.
'iter_max' positive integer, {100} Maximum number of iterations.
'vectorial' logical, {false} Wether the limit state function g is vectorial.
'display' {'none'}, 'final', 'iter' Defines the verbose level.
'gz' function_handle g as a function of x and z, used for dPPM/dz (see Mini Tutorial for an example).
'dgdz' function_handle dg/dz as a function of x and z, used for dPPM/dz (see Mini Tutorial for an example).
'z' real value z value, used for dPPM/dz (see Mini Tutorial for an example).
'T' function_handle Transformation T as a function of x and theta, used for dPPM/dtheta (see Mini Tutorial for an example).
'dTdx' function_handle dT/dx as a function of x and theta, used for dPPM/dtheta (see Mini Tutorial for an example).
'Tinvtheta' function_handle Inverse transformation Tinv as a function of u and theta, used for dPPM/dtheta (see Mini Tutorial for an example).
'dTinvdtheta' function_handle dTinv/dtheta as a function of u and theta, used for dPPM/dtheta (see Mini Tutorial for an example).
'theta' real value theta value, used for dPPM/dtheta (see Mini Tutorial for an example).

Example

Compute and plot a generalized "max-min" sample

g=@CODES.test.lin;
res=CODES.reliability.iform(g,2,2.5);
disp(res)
          Pf: 0.0062
        beta: 2.5000
    LS_count: 20
        MPTP: [1.7678 1.7678]
       uMPTP: [1.7678 1.7678]
         PPM: 0.5000

Demonstration

A complete demonstration of the capabilities of the iform function.

References

See also

form | sorm | mc | subset

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems