CODES / sampling / anti_lock
Generates an anti-locking sample
Contents
Syntax
- x_al=CODES.sampling.anti_lock(M,lb,ub) finds an anti-locking sample x_al on model M with lower bound lb and upper bound ub.
- x_al=CODES.sampling.anti_lock(...,param,value) uses a list of parameters param and values values (c.f., parameter table).
- [x_al,adds]=CODES.sampling.anti_lock(...) only if nb=1 and M.dim=2, returns a (1 x 2) cell,|adds|, made of center and points to plot region boundary (see, demonstration for more details).
Description
This function finds an anti-locking sample as introduced in Basudhar (2011). A first optimization problem searches a region of maximum unbalance as:
where and are the negative and positive samples,respectively, used to train , a meta-model (an SVM in Basudhar's work). The numerical implementation of this optimization problem follows the steps highlighted in Lacaze and Missoum (2014) regarding the use of the Chebychev distance (infinite norm). This problem being made differentiable, it is then solve using multi-start SQP.
Once the center is found, a second optimization is carried out:
where:
Parameters
param | value | Description |
---|---|---|
'nb' | positive integer, {1} | Number of anti-locking samples requested (nb≥2 is refered to as parallel, unpublished) |
'intensity' | positive integer, {30} | Number of starting points for the multi-start SQP algorithm |
'UseParallel' | logical, {M.UseParallel} | Parallel set up usage |
'MultiStart' | {'CODES'}, 'MATLAB' | Defines whether MATLAB or CODES multistart fmincon should be used. |
'Display' | {'off'}, 'iter', 'final' | Defines the verbose level. |
In addition, options from MultiStart can be used as well, when 'MultiStart' is set to 'MATLAB'.
Example
Compute and plot an anti-locking sample
DOE=CODES.sampling.cvt(20,2,'lb',[-5 -5],'ub',[5 5]); svm=CODES.fit.svm(DOE,DOE(:,1)-DOE(:,2)); x_al=CODES.sampling.anti_lock(svm,[-5 -5],[5 5]); figure('Position',[200 200 500 500]) svm.isoplot('lb',[-5 -5],'ub',[5 5]) plot(x_al(1),x_al(2),'ms')
Mini Tutorial
A mini tutorial of the capabilities of the anti_lock function. |
References
- Basudhar (2011): Basudhar A., (2011) Computational optimal design and uncertainty quantification of complex systems using explicit decision boundaries. The University of Arizona - DOI
- Lacaze and Missoum (2014): Lacaze S., Missoum S., (2014) A generalized "max-min" sample for surrogate update. Structural and Multidisciplinary Optimization 49(4):683-687 - DOI
See also
Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.
Computational Optimal Design of Engineering Systems |