CODES / sampling / mm

Find a "max-min" sample

Contents

Syntax

Description

This function finds a "max-min" sample as introduced in Basudhar and Missoum (2010):

$$\begin{array}{rl}x_{mm}=\mathop{\arg\max}\limits_{x}&\mathop{\min}\limits_{i}\left|\left|x-x^{(i)}\right|\right|\\\textbf{s.t.} & s(x)=0\\&l_j\leq x_j\leq u_j\end{array}$$

where $x^{(.)}$ are the existing samples used to train $s$, a meta-model (an SVM in Basudhar's work). The numerical implementation of this optimization problem follows the steps highlighted in Lacaze and Missoum (2014) regarding the use of the Chebychev distance (infinite norm). This problem being made differentiable, it is then solved using multi-start SQP.

Parameters

param value Description
'nb' positive integer, {1} Number of "max-min" samples requested ( 'nb' ≥ 2 is refered to as parallel, see Lin et al. (2012))
'intensity' positive integer, {30} Number of starting points for the multi-start SQP algorithm
'UseParallel' logical, {M.UseParallel} Should parallel setup be used
'MultiStart' {'CODES'}, 'MATLAB' Defines whether MATLAB or CODES multistart fmincon should be used.
'Display' {'off'}, 'iter', 'final' Defines the verbose level.

In addition, options from MultiStart can be used as well, when 'MultiStart' is set to 'MATLAB'.

Example

Compute and plot a "max-min" sample

DOE=CODES.sampling.cvt(20,2,'lb',[-5 -5],'ub',[5 5]);
svm=CODES.fit.svm(DOE,DOE(:,1)-DOE(:,2));
x_mm=CODES.sampling.mm(svm,[-5 -5],[5 5]);
figure('Position',[200 200 500 500])
svm.isoplot('lb',[-5 -5],'ub',[5 5])
plot(x_mm(1),x_mm(2),'ms')

Mini Tutorial

A mini tutorial of the capabilities of the mm function.

References

See also

anti_lock | edsd | gmm

Copyright © 2015 Computational Optimal Design of Engineering Systems (CODES) Laboratory. University of Arizona.

Computational Optimal Design of
Engineering Systems